Угрозы безопасности информации и их классификация

Угрозы безопасности информации бывают следующие:

Угроза удаленного администрирования. Под удаленным администрированием понимается несанкционированное управление удаленным компьютером. Удаленное администрирование позволяет брать чужой компьютер под свое управление. Это позволит копировать и модифицировать имеющиеся на нем данные, устанавливать на нем произвольные программы, в том числе и вредоносные, использовать чужой компьютер для совершения преступных действий в сети «от его имени».

Угроза активного содержимого. Активное содержимое – это активные объекты, встроенные в Web – страницы. В отличие от пассивного содержимого (текстов, рисунков, аудиоклипов и т.п.) активные объекта включают в себе не только данные, но и программный ход. Агрессивный программный ход, напавший на компьютер «жертвы», способен вести себя, как компьютерный вирус или как агентская программа. Так, например, он может производить разрушение данных, но может взаимодействовать с удаленными программами и, тем самым, работать как средство удаленного администрирования или готовить почву для ее установки.

Угроза перехвата или подмены данных на путях транспортировки. С проникновением Интернета в экономику очень остро встает угроза перехвата или подмены данных на путях транспортировки. Так, например, расчет электронными платежными средствами (картами платежных систем) предполагает отправку покупателем конфиденциальных данных о своей карте продавцу. Если эти данные будут перехвачены на одном из промежуточных серверов, нет гарантии, что ими не воспользуется злоумышленник. Кроме того, через Интернет передаются файлы программ. Подмена этих файлов на путях транспортировки может привести к тому, что вместо ожидаемой программы, клиент получит ее аналог с «расширенными» свойствами.

Угроза вмешательства в личную жизнь. В основе этой угрозы лежат коммерческие интересы рекламных организаций. В настоящее время годовой рекламный бюджет Интернета составляет несколько десятков миллиардов долларов США. В желании увеличить свои доходы от рекламы множество компаний организует Web – узлы не только для того, чтобы предоставлять клиентам сетевые услуги, сколько собрать о них персональные сведения. Эти сведения обобщаются, классифицируются и поставляются рекламным и маркетинговым службам. Процесс сбора персональной информации автоматизирован, не требует практически никаких затрат и позволяет без ведома клиентов исследовать их предпочтения, вкусы, привязанности.

Угроза поставки неприемлемого содержимого. Не вся информация, публикуемая в Интернете, может считаться полезной. Существует масса причин морально-этического, религиозного, культурного и политического характера, когда людям может неприятна поставляемая информация, и они хотят от нее защититься.

В большинстве стран мира Интернет пока не считается средством массовой информации (СМИ). Это связано с тем, что поставщик информации не занимается ее копированием, тиражированием и распространением, то есть он не выполняет функции СМИ. Все это делает сам клиент в момент использования гиперссылки. Поэтому обычные законы о средствах массовой информации, регламентирующие, что можно распространять, а что нет, в Интернете пока не работают. По видимому, правовой вакуум, имеющийся в этом вопросе, со временем будет ликвидирован, но многим людям и сегодня нужны средства защиты от поставки документов неприемлемого содержания. Обычно функции фильтрации поступающего содержания возлагают на броузер или на специально установленную для этой цели программу.

Системы защиты компьютера от чужого вторжения весьма разнообразны и могут быть классифицированы на такие группы, как:

1. Средства собственный защиты – элементы защиты, присущие самому программному обеспечению или сопровождающие его продажу и препятствующие незаконным действиям.

2. Средства защиты с запросом информации – требуют для своей работы ввода дополнительной информации с целью идентификации полномочий пользователей.

3. Средства пассивной защиты – направлены на предостережение, контроль, поиск улик и доказательств с целью создания обстановки неотвратимого раскрытия преступления.

4. Средства защиты в составе вычислительной системы – средства защиты аппаратуры, дисков и штатных устройств. При использовании таких средств операционная среда в отличие от штатного режима постоянно изменяется, поскольку выполнение программ зависит от определенных действий, специальных мер предосторожности и условий, гарантирующих защиту.

5. Средства активной защиты – инициируются при возникновении особых обстоятельств:

- вводе неправильного пароля;

- указания неправильной даты и времени при запуске программ;

- попытках доступа к информации без разрешения.

Система безопасности должна защищать:

От угроз природного происхождения (ураганов, наводнений, пожаров, ударов молний и т.п.), которые приводят либо к физическому повреждению компьютерной системы, либо к уничтожению или искажению информации (скажем, по причине электромагнитных излучений).

Второй тип угроз для информационных систем связан с надежностью технического обеспечения. К ним можно отнести проблемы с электропитанием, сбои в работе компьютерной аппаратуры, излучения и наводки от работающей техники, которые выходят за пределы контролируемой территории, ее утечки через каналы связи.

И, наконец, информационным системам угрожают люди. Это могут быть как непреднамеренные ошибки операторов и администраторов, в результате которых теряется информация или происходят сбои в работе системы, так и злонамеренные действия, направленные на нанесения ущерба.

Исходя из проведенного анализа, все источники угроз безопасности информации можно разделить на три основные группы:

· угрозы, обусловленные действиями субъекта (антропогенные);

· угрозы, обусловленные техническими средствами (техногенные);:

· угрозы, обусловленные стихийными источниками.

На основе анализа, проводимого различными специалистами в области компьютерных преступлений, можно расставить угрозы безопасности по частоте проявления следующим образом:

· кража (копирование) программного обеспечения;

· подмена (несанкционированный ввод) информации;

· уничтожение (разрушение) данных на носителях информации;

· нарушение нормальной работы (прерывание) в результате вирусных атак;

· модификация (изменение) данных на носителях информации;

· перехват (несанкционированный съем) информации;

· кража (несанкционированное копирование) ресурсов;

· нарушение нормальной работы (перегрузка) каналов связи;

· непредсказуемые потери.

Следствием реализации выявленных угроз безопасности информации в конеч­ном счете может стать ущемление прав собственника (пользователя) информации или нанесение ему материального ущерба, наступившее в результате:

1 уничтожения информации из-за нарушения программных, аппаратных или программно-аппаратных средств ее обработки либо систем защиты, а также из-за форс-мажорных обстоятельств, применения специальных технических (например, размагничивающих генераторов), программных (например, ло­гических бомб) средств воздействия, осуществляемого конкурентами, персоналом учреждения или его филиалов, преступными элементами либо поставщиками средств обработки информации в интересах третьих лиц;

2 модификации или искажения информации вследствие нарушения программных, аппаратных или программно-аппаратных средств ее обработки либо систем защиты, а также форс-мажорных обстоятельств, применения специ­альных программных (например, лазеек) средств воздействия, осуществляемого конкурентами, персоналом учреждения, поставщиками средств обработки информации в интересах третьих лиц;

3 хищения информации путем подключения к линиям связи или техническим средствам, за счет снятия и расшифровки сигналов побочных электромагнит­ных излучений, фотографирования, кражи носителей информации, подкупа или шантажа персонала учреждения или его филиалов, прослушивания конфиденциальных переговоров, осуществляемых конкурентами, персоналом ik учреждения или преступными элементами, несанкционированного копирования информации, считывания данных других пользователей, мистификации (маскировки под запросы системы), маскировки под зарегистрированного пользователя, проводимых обслуживающим персоналом автоматизированнойсистемы, хищение информации с помощью программных ловушек;

4 махинаций с информацией (путем применения программных, программно-аппаратных или аппаратных средств), осуществляемых в интересах третьих лиц поставщиками средств обработки информации или проводимых персо­налом учреждения. Также возможны подделка электронной подписи или отказ от нее.

Сетевая безопасность

Проблемы, возникающие с безопасностью передачи информации при работе в компьютерных сетях, можно разделить на три основных типа:

· Перехват информации – целостность информации сохраняется, но ее конфиденциальность нарушена;

· Модификация информации – исходное сообщение изменяется либо полностью подменяется другим и отсылается адресату;

· Подмена авторства информации. Данная проблема может иметь серьезные последствия. Например, кто-то может послать письмо от вашего имени (этот вид обмана принято называть спуфингом) или Web - сервер может «притворяться» электронным магазином, принимать заказы, номера кредитных карт, но не высылать никаких товаров.

В соответствии с перечисленными проблемами при обсуждении вопросов безопасности под самим термином «безопасность» подразумевается совокупность 3-х различных характеристик, обеспечивающих безопасность системы:

1. Аутентификация – это процесс распознавания пользователя системы и предоставления ему определенных прав и полномочий. Каждый раз, когда заходит речь о степени или качестве аутентификации, под этим следует понимать степень защищенности системы от посягательств стоящих лиц на эти полномочия.

Аутентификация является одним из самых важных компонентов организации защиты информации в сети. Прежде, чем пользователю будет предоставлено право получить тот или иной ресурс, необходимо убедиться, что он действительно тот, за кого себя выдает.

При получении запроса на использование ресурса от имени какого-либо пользователя сервер, предоставляющий данный ресурс, передает управление серверу аутентификации. После получения положительного ответа сервера аутентификации пользователю предоставляется запрашиваемый ресурс. При аутентификации используется, как правило принцип, получивший название «что он знает», – пользователь знает некоторое секретное слово, которое он посылает серверу аутентификации в ответ на его запрос. Одной из схем аутентификации является использование стандартных паролей. Эта схема является наиболее уязвимой с точки зрения безопасности – пароль может быть перехвачен и использован другим лицом. Чаще всего используются схемы с применением одноразовых паролей. Даже будучи перехваченным, этот пароль будет бесполезен при следующей регистрации, а получить следующий пароль из предыдущего является крайне трудной задачей. Для генерации одноразовых паролей используются как программные, так и аппаратные генераторы, представляющие собой устройства, вставляемые в слот компьютера. Знание секретного слова необходимо пользователю для приведения этого устройства в действие.

2. Целостность – состояние данных, при котором они сохраняют свое информационное содержание и однозначность интерпретаций в условиях различных воздействий. В частности, в случае передачи данных под целостностью понимается идентичность отправленного и принятого.

3. Секретность – предотвращение несанкционированного доступа к информации. В случае передачи данных под этим термином обычно понимают предотвращение перехвата информации.

При работе в Интернете следует иметь в виду, что насколько ресурсы Всемирной сети открыты каждому клиенту, настолько же и ресурсы его компьютерной системы могут быть при определенных условиях открыты всем, кто обладает необходимыми средствами.

Для частного пользователя этот факт не играет особой роли, но знать о нем необходимо, чтобы не допускать действий, нарушающих законодательства тех стран, на территории которых расположены серверы Интернета. К таким действиям относятся вольные или невольные попытки нарушить работоспособность компьютерных систем, попытки взлома защищенных систем, использование и распространение программ, нарушающих работоспособность компьютерных систем (в частности, компьютерных вирусов).

Работая во Всемирной сети, следует помнить о том, что абсолютно все действия фиксируются и протоколируются специальными программными средствами и информация как о законных, так и о незаконных действиях обязательно где-то • накапливается. Таким образом, к обмену информацией в Интернете следует подходить как к обычной переписке с использованием почтовых открыток. Информация свободно циркулирует в обе стороны, но в общем случае она доступна всем участникам информационного процесса. Это касается всех служб Интернета, открытых для массового использования.

Однако даже в обычной почтовой связи наряду с открытками существуют и почтовые конверты. Использование почтовых конвертов при переписке не означает, что партнерам есть, что скрывать. Их применение соответствует давно сложившейся исторической традиции и устоявшимся морально-этическим нормам общения. Потребность в аналогичных «конвертах» для защиты информации существует и в Интернете. Сегодня Интернет является не только средством общения и универсальной справочной системой — в нем циркулируют договорные и финансовые обязательства, необходимость защиты которых как от просмотра, так и от фальсификации очевидна. Начиная с 1999 года Интернет становится мощным средством обеспечения розничного торгового обормота, а это требует защиты данных кредитных карт и других электронных платежных средств.

Принципы защиты информации в Интернете опираются на определение информации, сформулированное нами в первой главе этого пособия. Информация — это продукт взаимодействия данных и адекватных им методов. Если в ходе коммуникационного процесса данные передаются через открытые системы (а Интернет относится именно к таковым), то исключить доступ к ним посторонних лиц невозможно даже теоретически. Соответственно, системы защиты сосредоточены на втором компоненте информации — на методах. Их принцип действия основан на том, чтобы исключить или, по крайней мере, затруднить возможность подбора адекватного метода для преобразования данных в информацию. Одним из приемов такой защиты является шифрование данных.

Понятие о несимметричном шифровании информации

Системам шифрования столько же лет, сколько письменному обмену информацией. Обычный подход состоит в том, что к документу применяется некий метод шифрования, основанный на использовании ключа, после чего документ становится недоступен для чтения обычными средствами. Его можно прочитать только тот, кто знает ключ, — только он может применить адекватный метод чтения. Аналогично происходит шифрование и ответного сообщения. Если в процессе обмена информацией для шифрования и чтения пользуются одним и тем же ключом, то такой криптографический процесс является симметричным.

Основной недостаток симметричного процесса заключается в том, что, прежде чем начать обмен информацией, надо выполнить передачу ключа, а для этого опять таки нужна защищенная связь, то есть проблема повторяется, хотя и на другом уровне. Если рассмотреть оплату клиентом товара или услуги с помощью кредитной карты, то получается, что торговая фирма должна создать по одному ключу для каждого своего клиента и каким-то образом передать им эти ключи. Это крайне неудобно.

Поэтому в настоящее время в Интернете используют несимметричные криптографические системы, основанные на использовании не одного, а двух ключей. Происходит это следующим образом. Компания для работы с клиентами создает два ключа: один открытый (public — публичный), а другой закрытый (private — личный). На самом деле это как бы две «половинки» одного целого ключа, связанные друг . с другом.

Ключи устроены так, что сообщение, зашифрованное одной половинкой, можно расшифровать только другой половинкой (не той, которой оно было закодировано). Создав пару ключей, торговая компания широко распространяет публичный ключ (открытую половинку) и надежно сохраняет закрытый ключ (свою половинку).

Как публичный, так и закрытый ключи представляют собой некую кодовую последовательность. Публичный ключ компании может быть опубликован на ее сервере, откуда каждый желающий может его получить. Если клиент хочет сделать фирме заказ, он возьмет ее публичный ключ и с его помощью закодирует свое сообщение о заказе и данные о своей кредитной карте. После кодирования это сообщение может прочесть только владелец закрытого ключа. Никто из участников цепочки, по которой пересылается информация, не в состоянии это сделать. Даже сам отправитель не может прочитать собственное сообщение, хотя ему хорошо известно содержание. Лишь получатель сможет прочесть сообщение, поскольку только у него есть закрытый ключ, дополняющий использованный публичный ключ.

Если фирме надо будет отправить клиенту квитанцию о том, что заказ принят к исполнению, она закодирует ее своим закрытым ключом. Клиент сможет прочитать квитанцию, воспользовавшись имеющимся у него публичным ключом данной фирмы. Он может быть уверен, что квитанцию ему отправила именно эта фирма, поскольку никто иной доступа к закрытому ключу фирмы не имеет.

Принцип достаточности защиты

Защита публичным ключом (впрочем, как и большинство других видов защиты информации) не является абсолютно надежной. Дело в том, что поскольку каждый желающий может получить и использовать чей-то публичный ключ, то он может сколь угодно подробно изучить алгоритм работы механизма шифрования и пытаться установить метод расшифровки сообщения, то есть реконструировать закрытый ключ.

Это настолько справедливо, что алгоритмы кодирования публичным ключом даже нет смысла скрывать. Обычно к ним есть доступ, а часто они просто широко публикуются. Тонкость заключается в том, что знание алгоритма еще не означает возможности провести реконструкцию ключа в разумно приемлемые сроки. Так, например, правила игры в шахматы известны всем, и нетрудно создать алгоритм для перебора всех возможных шахматных партий, но он никому не нужен, поскольку даже самый быстрый современный суперкомпьютер будет работать над этой задачей дольше, чем существует жизнь на нашей планете.

Количество комбинаций, которое надо проверить при реконструкции закрытого ключа, не столь велико, как количество возможных шахматных партий, однако защиту информации принято считать достаточной, если затраты на ее преодоление превышают ожидаемую ценность самой информации. В этом состоит принцип достаточности защиты, которым руководствуются при использовании несимметричных средств шифрования данных. Он предполагает, что защита не абсолютна и приемы ее снятия известны, но она все же достаточна для того, чтобы сделать это мероприятие нецелесообразным. При появлении иных средств, позволяющих таки получить зашифрованную информацию в разумные сроки, изменяют принцип работы алгоритма, и проблема повторяется на более высоком уровне.

Разумеется, не всегда реконструкцию закрытого ключа производят методами простого перебора комбинаций. Для этого существуют специальные методы, основанные на исследовании особенностей взаимодействия открытого ключа с определенными структурами данных. Область науки, посвященная этим исследованиям, называется криптоанализом, а средняя продолжительность времени, необходимого для реконструкции закрытого ключа по его опубликованному открытому ключу, называется криптостойкостью алгоритма шифрования.

Понятие об электронной подписи

Мы рассмотрели, как клиент может переслать организации свои конфиденциальные данные (например, номер электронного счета). Точно так же он может общаться с банком, отдавая ему распоряжения о перечислении своих средств на счета других лиц и организаций. Ему не надо ездить в банк и стоять в очереди — все можно сделать, не отходя от компьютера. Однако здесь возникает проблема: как банк узнает, что распоряжение поступило именно отданного лица, а не от злоумышленника, выдающего себя за него? Эта проблема решается с помощью так называемой электронной подписи.

Принцип ее создания тот же, что и рассмотренный выше. Если нам надо создать себе электронную подпись, следует с помощью специальной программы (полученной от банка) создать те же два ключа: закрытый и публичный. Публичный ключ передается банку. Если теперь надо отправить поручение банку на операцию с расчетным счетом, оно кодируется публичным ключом банка, а своя подпись под ним кодируется собственным закрытым ключом. Банк поступает наоборот. Он читает поручение с помощью своего закрытого ключа, а подпись — с помощью публичного ключа поручителя. Если подпись читаема, банк может быть уверен, что поручение ему отправили именно мы, и никто другой.

Понятие об электронных сертификатах

Системой несимметричного шифрования обеспечивается делопроизводство в Интернете. Благодаря ей каждый из участников обмена может быть уверен, что полученное сообщение отправлено именно тем, кем оно подписано. Однако здесь возникает еще ряд проблем, например проблема регистрации даты отправки сообщения. Такая проблема возникает во всех случаях, когда через Интернет заключаются договоры между сторонами. Отправитель документа может легко изменить текущую дату средствами настройки операционной системы. Поэтому обычно дата и время отправки электронного документа не имеют юридической силы. В тех же случаях, когда это важно, выполняют сертификацию даты/времени.

Сертификация даты. Сертификация даты выполняется при участии третьей, независимой стороны. Например, это может быть сервер организации, авторитет которой в данном вопросе признают оба партнера. В этом случае документ, зашифрованный открытым ключом партнера и снабженный своей электронной подписью, отправляется сначала на сервер сертифицирующей организации. Там он получает «приписку» с указанием точной даты и времени, зашифрованную закрытым ключом этой организации. Партнер декодирует содержание документа, электронную подпись отправителя и отметку о дате с помощью своих «половинок» ключей. Вся работа автоматизирована.

Сертификация Web-узлов. Сертифицировать можно не только даты. При заказе товаров в Интернете важно убедиться в том, что сервер, принимающий заказы и платежи от имени некоей фирмы, действительно представляет эту фирму. Тот факт, что он распространяет ее открытый ключ и обладает ее закрытым ключом, строго говоря, еще ничего не доказывает, поскольку за время, прошедшее после создания ключа, он мог быть скомпрометирован. Подтвердить действительность ключа тоже может третья организация путем выдачи сертификата продавцу. В сертификате указано, когда он выдан и на какой срок. Если добросовестному продавцу станет известно, что его закрытый ключ каким-либо образом скомпрометирован, он сам уведомит сертификационный центр, старый сертификат будет аннулирован, создан новый ключ и выдан новый сертификат.

Прежде чем выполнять платежи через Интернет или отправлять данные о своей кредитной карте кому-либо, следует проверить наличие действующего сертификата у получателя путем обращения в сертификационный центр. Это называется сертификацией Web-узлов.

Сертификация издателей. Схожая проблема встречается и при распространении программного обеспечения через Интернет. Так, например, мы указали, что браузеры, служащие для просмотра Web-страниц, должны обеспечивать механизм защиты от нежелательного воздействия активных компонентов на компьютер клиента. Можно представить, что произойдет, если кто-то от имени известной компании начнет распространять модифицированную версию ее браузера, в которой специально оставлены бреши в системе защиты. Злоумышленник может использовать их для активного взаимодействия с компьютером, на котором работает такой браузер.

Это относится не только к браузерам, но и ко всем видам программного обеспечения, получаемого через Интернет, в которое могут быть имплантированы «троянские кони», «компьютерные вирусы», «часовые бомбы» и прочие нежелательные объекты, в том числе и такие, которые невозможно обнаружить антивирусными средствами. Подтверждение того, что сервер, распространяющий программные продукты от имени известной фирмы, действительно уполномочен ею для этой деятельности, осуществляется путем сертификации издателей. Она организована аналогично сертификации Web-узлов.

Антивирусные программы

Компьютерный вирус — это программный код, встроенный в другую программу, или в документ, или в определенные области носителя данных и предназначенный для выполнения несанкционированных действий на несущем компьютере.

Основными типами компьютерных вирусов являются:

• программные вирусы;

• загрузочные вирусы;

• макровирусы.

К компьютерным вирусам примыкают и так называемые троянские кони (троянские программы, троянцы).

Программные вирусы. Программные вирусы — это блоки программного кода, целенаправленно внедренные внутрь других прикладных программ. При запуске программы, несущей вирус, происходит запуск имплантированного в нее вирусного кода. Работа этого кода вызывает скрытые от пользователя изменения в файловой системе жестких дисков и/или в содержании других программ. Так, например, вирусный код может воспроизводить себя в теле других программ —этот процесс называется размножением. По прошествии определенного времени, создав достаточное количество копий, программный вирус может перейти к разрушительным действиям — нарушению работы программ и операционной системы, удалению информации, хранящейся на жестком диске. Этот процесс называется вирусной атакой.

Самые разрушительные вирусы могут инициировать форматирование жестких дисков. Поскольку форматирование диска — достаточно продолжительный процесс, который не должен пройти незамеченным со стороны пользователя, во многих случаях программные вирусы ограничиваются уничтожением данных только в системных секторах жесткого диска, что эквивалентно потере таблиц файловой структуры. В этом случае данные на жестком диске остаются нетронутыми, но воспользоваться ими без применения специальных средств нельзя, поскольку неизвестно, какие сектора диска каким файлам принадлежит. Теоретически восстановить данные в этом случае можно, но трудоемкость этих работ исключительно высока.

Считается, что никакой вирус не в состоянии вывести из строя аппаратное обеспечение компьютера. Однако бывают случаи, когда аппаратное и программное обеспечение настолько взаимосвязаны, что программные повреждения приходится устранять заменой аппаратных средств. Так, например, в большинстве современных материнских плат базовая система ввода-вывода (BIOS) хранится в перезаписываемых постоянных запоминающих устройствах (так называемая флэш-память). Возможность перезаписи информации в микросхеме флэш-памяти используют некоторые программные вирусы для уничтожения данных BIOS. В этом случае для восстановления работоспособности компьютера требуется либо замена микросхемы, хранящей BIOS., либо ее перепрограммирование на специальных устройствах, называемых программаторами.

Программные вирусы поступают на компьютер при запуске непроверенных программ, полученных на внешнем носителе (гибкий диск, компакт-диск и т. п.) или принятых из Интернета. Особое внимание следует обратить на слова при запуске. При обычном копировании зараженных файлов заражение компьютера произойти не может. В связи с этим все данные, принятые из Интернета, должны проходить обязательную проверку на безопасность, а если получены незатребованные данные из незнакомого источника, их следует уничтожать, не рассматривая. Обычный прием распространения «троянских» программ — приложение к электронному '. . письму с «рекомендацией» извлечь и запустить якобы полезную программу.

Загрузочные вирусы. От программных вирусов загрузочные вирусы отличаются методом распространения. Они поражают не программные файлы, а определенные системные области магнитных носителей (гибких и жестких дисков). Кроме того, на включенном компьютере они могут временно располагаться в оперативной памяти.

Обычно заражение происходит при попытке загрузки компьютера с магнитного носителя, системная область которого содержит загрузочный вирус. Так, например, при попытке загрузить компьютер с гибкого диска происходит сначала проникновение вируса в оперативную память, а затем в загрузочный сектор жестких дисков. Далее этот компьютер сам становится источником распространения загрузочного вируса.

Макровирусы. Эта особая разновидность вирусов поражает документы, выполненные в некоторых прикладных программах, имеющих средства для исполнения так называемых макрокоманд. В частности, к таким документам относятся документы текстового процессора Microsoft Word (они имеют расширение .DOC). Заражение происходит при открытии файла документа в окне программы, если в ней не отключена возможность исполнения макрокоманд. Как и для других типов вирусов, результат атаки может быть как относительно безобидным, так и разрушительным.

Методы защиты от компьютерных вирусов

Существуют три рубежа защиты от компьютерных вирусов:

• предотвращение поступления вирусов;

• предотвращение вирусной атаки, если вирус все-таки поступил на компьютер;

• предотвращение разрушительных последствий, если атака все-таки произошла. Существуют три метода реализации защиты:

• программные методы защиты;

• аппаратные методы защиты;

• организационные методы защиты.

В вопросе защиты ценных данных часто используют бытовой подход: «болезнь лучше предотвратить, чем лечить». К сожалению, именно он и вызывает наиболее разрушительные последствия. Создав бастионы на пути проникновения вирусов в компьютер, нельзя положиться на их прочность и остаться неготовым к действиям после разрушительной атаки. К тому же вирусная атака — далеко не единственная и даже не самая распространенная причина утраты важных данных. Существуют программные сбои, которые могут вывести из строя операционную систему, а также аппаратные сбои, способные сделать жесткий диск неработоспособным. Всегда существует вероятность утраты компьютера вместе с ценными данными в результате кражи, пожара или иного стихийного бедствия.

Поэтому создавать систему безопасности следует в первую очередь «с конца» — с предотвращения разрушительных последствий любого воздействия, будь то вирусная атака, кража в помещении или физический выход жесткого диска из строя. Надежная и безопасная работа с данными достигается только тогда, когда любое неожиданное событие, в том числе и полное физическое уничтожение компьютера, не приведет к катастрофическим последствиям.

Средства антивирусной защиты

Основным средством защиты информации является резервное копирование наиболее ценных данных. В случае утраты информации по любой из вышеперечисленных причин жесткие диски переформатируют и подготавливают к новой эксплуатации. На «чистый» отформатированный диск устанавливают операционную систему с дистрибутивного компакт-диска, затем под ее управлением устанавливают все необходимое программное обеспечение, которое тоже берут с дистрибутивных носителей. Восстановление компьютера завершается восстановлением данных, которые берут с резервных носителей.

При резервировании данных следует также иметь в виду и то, что надо отдельно сохранять все регистрационные и парольные данные для доступа к сетевым службам Интернета. Их не следует хранить на компьютере. Обычное место хранения — служебный дневник в сейфе руководителя подразделения.

Создавая план мероприятий по резервному копированию информации, необходимо учитывать, что резервные копии должны храниться отдельно от компьютера. То есть, например, резервирование информации на отдельном жестком диске того же компьютера только создает иллюзию безопасности. Относительно новым и достаточно надежным приемом хранения ценных, но неконфиденциальных данных является их хранение в Web-папках на удаленных серверах в Интернете. Есть службы, бесплатно предоставляющие пространство (до нескольких Мбайт) для хранения данных пользователя.

Резервные копии конфиденциальных данных сохраняют на внешних носителях, которые хранят в сейфах, желательно в отдельных помещениях. При разработке организационного плана резервного копирования учитывают необходимость создания не менее двух резервных копий, сохраняемых в разных местах. Между копиями осуществляют ротацию. Например, в течение недели ежедневно копируют данные на носители резервного комплекта «А», а через неделю их заменяют комплектом «Б» и т. д.

Вспомогательными средствами защиты информации являются антивирусные программы и средства аппаратной защиты. Так, например, простое отключение перемычки на материнской плате не позволит осуществить стирание перепрограммируемой микросхемы ПЗУ (флэш-BIOS), независимо от того, кто будет пытаться это сделать: компьютерный вирус, злоумышленник или неаккуратный пользователь.

Существует достаточно много программных средств антивирусной защиты. Они предоставляют следующие возможности.

1. Создание образа жесткого диска на внешних носителях (например, на гибких дисках). В случае выхода из строя данных в системных областях жесткого диска сохраненный «образ диска» может позволить восстановить если не все данные, то по крайней мере их большую часть. Это же средство может защитить от утраты данных при аппаратных сбоях и при неаккуратном форматировании жесткого диска.

2. Регулярное сканирование жестких дисков в поисках компьютерных вирусов. Сканирование обычно выполняется автоматически при каждом включении компьютера и при размещении внешнего диска в считывающем устройстве. При сканировании следует иметь в виду, что антивирусная программа ищет вирус путем сравнения кода программ с кодами известных ей вирусов, хранящимися в базе данных. Если база данных устарела, а вирус является новым, сканирующая программа его не обнаружит. Для надежной работы следует регулярно обновлять антивирусную программу. Желательная периодичность обновления — один раз в две недели; допустимая — один раз в три месяца. Для примера укажем, что разрушительные последствия атаки вируса W95.CIH. 1075 («Чернобыль»), вызвавшего уничтожение информации на сотнях тысяч компьютеров 26 апреля 1999 года, были связаны не с отсутствием средств защиты от него, а с длительной задержкой (более года) в обновлении этих средств.

3. Контроль изменения размера и других атрибутов файлов. Поскольку некоторые компьютерные вирусы на этапе размножения изменяют параметры зараженных файлов, контролирующая программа может обнаружить их деятельность и предупредить пользователя.

4. Контроль обращений к жесткому диску. Поскольку наиболее опасные операции, связанные с работой компьютерных вирусов, так или иначе обращены на модификацию данных, записанных на жестком диске, антивирусные программы могут контролировать обращения к нему и предупреждать пользователя о подозрительной активности.

[kgl]

Наши рекомендации