Сети и технологии ISDN и SDH

Сети и технологии ISDN. Сети ISDN (Integrated Services Digital Network – цифровая сеть с интеграцией услуг) относятся к классу сетей, изначально предназначенных для передачи как данных, так и голоса. Это сети, обеспечивающие цифровое соединение между оконечными абонентами сети для предоставления широкого набора услуг, к которым пользователи получают доступ через ограниченное число стандартных многофункциональных интерфейсов.

В сетях ISDN используется цифровая технология, получающая все большее распространение, так как:

-цифровые устройства, используемые в ISDN, производятся на основе интегральных схем высокой интеграции; по сравнению с аналоговыми устройствами они отличаются большой надежностью и устойчивостью в работе и, кроме того, в производстве и эксплуатации, как правило, дешевле;

- цифровую технологию можно использовать для передачи любой информации по одному каналу (акустических сигналов, телевизионных видеоданных, факсимильных данных);

- цифровые методы преодолевают многие из ограничений передачи и хранения, которые присущи аналоговым технологиям.

В сетях ISDN при передаче аналогового сигнала осуществляется преобразование его в последовательность цифровых значений, а при приеме – обратное преобразование.

Аналоговый сигнал проявляется как постоянное изменение амплитуды во времени. Например, при разговоре по телефону, который действует как преобразователь акустических сигналов в электрические, механические колебания воздуха (чередование высокого и низкого давления) преобразуются в электрический сигнал с такой же характеристикой огибающей амплитуды. Однако непосредственная передача аналогового электрического сигнала по телефонной линии связи сопряжена с рядом недостатков: искажение сигнала вследствие его нелинейности, которая увеличивается усилителями, затухание сигнала при передаче через среду, подверженность влиянию шумов в канале и др.

В ISDN эти недостатки преодолимы. Здесь форма аналогового сигнала представляется в виде цифровых (двоичных) образов, цифровых значений, представляющих соответствующие значения амплитуды огибающей синусоидальных колебаний в точках, на дискретных уровнях. Цифровые сигналы также подвержены ослаблению и шумам при их прохождении через канал, однако на приемном пункте необходимо отмечать лишь наличие или отсутствие двоичного цифрового импульса, а не его абсолютное значение, которое важно в случае аналогового сигнала. Следовательно, цифровые сигналы принимаются надежнее, их можно полностью восстановить, прежде чем они из-за затухания станут ниже порогового значения.

Подключение пользовательского оборудования к сети ISDN производится на одной из двух стандартных скоростей. Первая из них – «базовая» скорость (BRI – Basic Rate Interface), а вторая – «первичная» (PRI – Primary Rate Interface). При передаче информации по BRI в канале создаются три логических подканала, два из которых, называемые В-каналами, предназначены для передачи «полезной» информации пользователя (в частности, голоса). Каждый из В-каналов требует полосы пропускания 64 Кбит/с. Третий подканал, называемый D-каналом, требует такой же полосы пропускания и используется прежде всего для передачи служебной информации, которая определяет порядок обработки информации, передаваемой по В-каналам. Иногда D-канал используется для передачи полезной информации, его полоса пропускания равна 16 Кбит/с. Следовательно, общая полоса пропускания, т.е. скорость передачи, соответствующая интерфейсу BRI, составляет 144 Кбит/с.

Канал PRI имеет свою специфику в разных странах. В США, Канаде и Японии он состоит из двух В-каналов и одного D-канала, каждый из них имеет пропускную способность 64 Кбит/с, а общая пропускная способность PRI-канала равна 1536 Кбит/с (с учетом служебной информации). В Европе канал PRI занимает полосу пропускания 1920 Кбит/с.

Большая полоса пропускания каналов, необходимая для построения сетей ISDN, является основным препятствием на пути их распространения, особенно в странах со слабо развитой инфраструктурой высокоскоростных каналов связи. Однако существуют механизмы, позволяющие строить такие сети, более экономно используя полосу пропускания каналов связи. Один из таких механизмов позволяет уплотнять В-каналы, используемые для передачи голоса. При этом реализуется техника кодирования (преобразования акустических сигналов в цифровой код), получившая название импульсно-кодовой модуляции (ИКМ). В настоящее время техника кодирования голоса шагнула далеко вперед, обеспечивая вполне приемлемое качество голосовой связи при гораздо меньшей полосе пропускания (в одном из практических случаев голосовая информация, передаваемая по каждому из В-каналов, сжимается и передается со скоростью 6,33 Кбит/с).

Преобразование аналоговых сигналов в цифровые осуществляется различными методами. Один из них - импульсно-кодовая модуляция (ИКМ).

По мнению специалистов, развитию сетей и технологий ISDN способствуют такие факторы: либерализация и приватизация в области телекоммуникаций (это приводит в появлению новых конкурентов и новых сетевых продуктов); сближение технологий информатизации, телекоммуникаций и отрасли развлечений (это положительно воздействует на развитие кабельного телевидения, спутниковой связи и радиодоступа, при этом на первое место выходит задача обеспечения комплексности предоставления услуг связи); развитие сети Internet; непрекращающийся рост сетей подвижной связи (эти сети растут значительно быстрее фиксированных сетей, причем наблюдается перераспределение трафика – с фиксированных сетей на сети подвижной связи). Разное состояние этих факторов, выступающих в роли движущих сил развития ISDN-сетей, приводит к различию стратегических и тактических подходов в деле их внедрения в разных странах.

Резкое возрастание роли ISDN-сетей объясняется тем, что они обеспечивают интегрированный доступ к речевым и неречевым услугам, имеют сложившуюся инфраструктуру, являются цифровыми сетями, основанными на использовании цифровых каналов 64 Кбит/с, обладают достаточной гибкостью. Популяризация ISDN-сети возрастает, поскольку по определению она является мультисервисной (обеспечивает услуги по предоставлению связи, доставке информации, а также дополнительные услуги), ориентированной на приложения. Термин «приложение» означает определенную сферу применения ISDN (например, дистанционное обучение), а термин «решение» используется для объяснения, каким образом данное приложение реализуется средствами ISDN (дистанционное обучение осуществляется с помощью услуги видеоконференцсвязи).

Технология ISDN стабильно развивается, а сеть на ее основе имеет необходимые интерфейсы с не ISDN-сетями. Кроме того, имеется большой набор терминального оборудования для ISDN-сетей.

Терминальное оборудование ISDN разбивается на такие группы: цифровые телефонные аппараты, терминальные адаптеры для ПК, оборудование видеосвязи.

Основные средства доступа к сети ISDN: маршрутизаторы или мосты локальных сетей, оконечные сетевые устройства базового и первичного доступа для ВОЛС и медных линий связи, мультиплексоры (для сбора и передачи информации от удаленных абонентов), системы для проведения видеоконференций, мини-УАТС (управленческие автоматические телефонные станции).

Цифровые УАТС с функциями ISDN позволяют: более полно использовать каналы связи для передачи данных и речи, выйти абоненту в сеть ISDN с различных устройств (телефона, факса, компьютера), одновременно передавать речь и данные (если в составе УАТС имеются двухпроводные цифровые телефонные аппараты с расширенными функциями и портом для подключения ПК), подключать мосты или маршрутизаторы для взаимодействия удаленных ЛКС.

Сети и технологии ISDN предоставляют пользователям следующие основные услуги: передача данных со скоростью 64 Кбит/с, передача речи в цифровом виде, телетекст, факс, видеосвязь. При использовании каждой из них абонент может воспользоваться такими дополнительными услугами: организация замкнутых групп пользователей, организация конференцсвязи, предоставление сети своего номера или отказ на предоставление и др.

Таким образом, сети ISDN, основной целью разработки которых было объединение в одной сети трафиков цифровых телефонных сетей и компьютерных данных, в настоящее время широко используются для решения задач по передаче информации в следующих областях: телефония, передача данных, объединение ЛКС, доступ к глобальным компьютерным сетям, интеграция различных видов трафика, передача трафика, чувствительного к задержкам (звук, видео).

Сети и технологии SDH. В сетях стандарта SDH (Synchronous Digital Hierarchy – синхронная цифровая иерархия) реализуется технология синхронных волоконно-оптических сетей. Это высокоскоростные сети цифровой связи, которые строятся на базе оптоволоконных кабельных линий или цифровых радиорелейных линий. Основу инфраструктуры современных высокоскоростных телекоммуникационных сетей (магистральных, региональных или городских) составляют цифровые линии и узлы сети стандарта SDH.

При построении сетей SDH используются следующие модули:

- мультиплексоры SDH – это основные функциональные модули сетей SDH, предназначенные для сборки высокоскоростного потока информации из низкоскоростных потоков и разборки высокоскоростного потока на низкоскоростные;

- коммутаторы, обеспечивающие связь каналов, закрепленных за пользователями путем полупостоянного перекрестного соединения между ними;

- концентраторы, служащие для объединения однотипных потоков нескольких удаленных узлов сети в одном распределенном узле;

- регенераторы, устройства мультиплексирования с одним оптическим каналом доступа и одним – двумя выходами, используемыми для увеличения расстояния между узлами сети SDH.

Сети и технологии SDH отличаются высоким уровнем стандартизации (что позволяет в одной сети использовать оборудование разных фирм-производителей), высокой надежностью (централизованное управление сетью обеспечивает полный мониторинг состояния узлов), наличием полного программного контроля (отслеживание и регистрация аварийных ситуаций, управление конфигурацией сети осуществляется программными средствами с единой консоли управления), возможностью оперативного предоставления услуг по требованию, сравнительно простой схемой развития сети. Благодаря этим преимуществам технология SDH стала основной при построении цифровых транспортных сетей самого различного масштаба.

Топология всей SDH-сети формируется из отдельных базовых топологий типа «кольцо», «линейная цепь», «звезда», «точка-точка», которые используются в качестве сегментов сети. Чаще применяется радиально-кольцевая архитектура SDH-сети, построенная на базе кольцевой и линейной топологий.

В России наибольшую активность в использовании SDH-технологии проявляет АО «Ростелеком». Это АО ежегодно строит 5 - 6 тыс. км магистральных цифровых линий на основе волоконно-оптических кабелей (ВОЛС) и цифровых радиорелейных линий [6]. Компанией RASCOM построена в 1994 г. и эксплуатируется высокоскоростная цифровая оптоволоконная магистральная линия стандарта SDH между Москвой и Санкт-Петербургом протяженностью 690 км.

Сети и технологии АТМ

Технология АТМ (Asynchronous Transfer Mode – режим асинхронной передачи) является одной из самых перспективных технологий построения высокоскоростных сетей. Она обеспечивает максимально эффективное использование полосы пропускания каналов связи при передаче различного рода информации: голоса, видеоинформации, данных от самых разных типов устройств – асинхронных терминалов, узлов сетей передачи данных, локальных сетей и т.д. (к таким сетям относятся практически все ведомственные сети). Сети, в которых используется АТМ-технология, называются АТМ-сетями. Эффективность АТМ-технологии заключается в возможности применения различных интерфейсов для подключения пользователей к сетям АТМ.

Основные особенности АТМ-технологии.

1. АТМ – асинхронная технология, так как пакеты небольшого размера, называемые ячейками (cells), передаются по сети, не занимая конкретных временных интервалов, как это имеет место в В-каналах сетей ISDN.

2. Технология АТМ ориентирована на предварительное (перед передачей информации) установление соединения между двумя взаимодействующими пунктами. После установления соединения АТМ-ячейки маршрутизируют себя сами, поскольку каждая ячейка имеет поля, идентифицирующие соединение, к которому она относится.

3. По технологии АТМ допускается совместная передача различных видов сигналов, включая речь, данные, видеосигналы. Достигаемая при этом скорость передачи (от 155 Мбит/с до 2,2 Гбит/с) может быть обеспечена одному пользователю, рабочей группе или всей сети. В АТМ-ячейке не предусматриваются позиции для определенных видов передаваемой информации, поэтому пропускная способность канала регулируется путем выделения полосы пропускания потребителю.

4. Поскольку передаваемая информация разбивается на ячейки фиксированного размера (53 байта), алгоритмы их коммутации реализованы аппаратно, что позволяет устранить задержки, неизбежные при программной реализации коммутации ячеек.

5. АТМ-технология обладает способностью к наращиваемости, т.е. к увеличению размера сети путем каскадного соединения нескольких АТМ-коммутаторов.

6. Построение АТМ-сетей и реализация соответствующих технологий возможны на основе оптоволоконных линий связи, коаксиальных кабелей, неэкранированной витой пары. Однако в качестве стандарта на физические каналы для АТМ выбран стандарт на оптоволоконные каналы связи синхронной цифровой иерархии SDH. Технология мультиплексирования и коммутации, разработанная для SDH, стала АТМ-технологией.

7. АТМ-технологии могут быть реализованы в АТМ-сетях практически любой топологии, но оконечное оборудование пользователей подключается к коммутаторам АТМ индивидуальными линиями по схеме «звезда».

Главное отличие АТМ-технологии от других телекоммуникационных технологий заключается в высокой скорости передачи информации (в перспективе – до 10 Гбит/с), причем привязка к какой-либо одной скорости отсутствует. Важным является и то обстоятельство, что АТМ-сети совмещают функции глобальных и локальных сетей, обеспечивая идеальные условия для «прозрачной» транспортировки различных видов трафика и доступа к услугам и службам взаимодействующих с сетью АТМ-сетей.

АТМ-технология допускает использование как постоянных (PVC), так и коммутируемых (SVC) виртуальных каналов.

PVC представляет собой соединение (после предварительной настройки) между взаимодействующими пользователями сети, которое существует постоянно. Устройства, связываемые постоянным виртуальным каналом, должны вести довольно громоздкие таблицы маршрутизации, отслеживающие все соединения в сети. Следовательно, рабочие станции, соединенные PVC, должны иметь таблицы маршрутизации всех остальных станций сети, что нерационально и может вызывать задержки в передаче.

Коммутируемые виртуальные каналы (SVC) позволяют устранить необходимость ведения сложных таблиц маршрутизации и таким образом повысить эффективность функционирования сети. Здесь соединение устанавливается динамически, при этом используются АТМ-маршрутизаторы. В отличие от традиционных маршрутизаторов, которые требуют физического подключения сетевого сегмента к каждому из своих портов, в АТМ-маршрутизаторах используется не физическая архитектура с ориентацией на соединения, а виртуальная сетевая архитектура, ориентированная на протоколы. Такие маршрутизаторы необходимы и удобны для создания виртуальной сети, для которой характерной является возможность переключения пользователей, находящихся в любой точке сети, с одного сегмента на другой с сохранением виртуального адреса рабочей группы, что упрощает администратору сети задачу учета изменений списка пользователей.

АТМ-технология способна обрабатывать трафики различных классов.

В существующих спецификациях предусмотрены четыре класса трафика, которые могут быть в режиме АТМ:

Класс А – синхронный трафик с постоянной скоростью передачи и с предварительным установлением соединения. Протокол, обслуживающий трафик этого класса, предназначен для обеспечения потребностей в сетевых услугах при передаче информации с постоянной скоростью (передача и прием АТМ-ячеек по АТМ-пути осуществляются с одной и той же скоростью). Примеры такого трафика – несжатая речь, видеоинформация.

Класс В – синхронный трафик с переменной скоростью передачи и с предварительным установлением соединения (например, сжатая речь, видеоинформация). Здесь, как и в случае трафика класса А, необходимы синхронизация аппаратуры отправителя и получателя и предварительное установление связи между ними, но допускается переменная скорость передачи. Информация передается через фиксированные промежутки времени, но ее объем в течение сеанса передачи может изменяться. Если объем передаваемой информации превышает фиксированный размер одной ячейки, эта информация разбивается на несколько ячеек, сборка которых осуществляется в пункте назначения.

Класс С – асинхронный трафик с переменной скоростью передачии с предварительным установлением соединения. Здесь синхронизации аппаратуры отправителя и получателя не требуется. Такой способ передачи необходим в сетях с коммутацией пакетов (сети Х.25, Internet, сети с ретрансляцией кадров). Трафик класса С, видимо, станет основным для передачи информации в глобальных сетях.

Класс D – асинхронный трафик с переменной скоростью передачи и без установления соединения. Протокол, управляющий доставкой трафика класса D, разработан для обеспечения многобитовой коммутации данных без установления соединения. В этом протоколе предусматривается использование кадров переменной длины: с помощью передатчика каждый кадр делится на сегменты фиксированного размера, которые помещаются в АТМ-ячейки; приемник собирает сегменты в исходный кадр, завершая таким образом процесс, который называется сегментацией и сборкой.

Режим асинхронной передачи основан на концепции двух оконечных пунктов сети (абонентских систем, терминалов), осуществляющих связь друг с другом через совокупность промежуточных коммутаторов. При этом используются интерфейсы двух типов: интерфейс пользователя с сетью (UNI – User-to-Network Interface) и интерфейс между сетями (NNI – Network-to-Network Interface). UNI соединяет устройство оконечного пользователя с общедоступным или частным АТМ-коммутатором, а NNI представляет собой канал связи между двумя АТМ-коммутаторами сети (рис.9).

UNI

UNI

Рис. 9. Сеть на базе АТМ

Соединение между двумя оконечными пунктами сети (напомним, что АТМ-технология ориентирована на предварительное установление соединения) возникает с того момента, когда один из них передает через UNI запрос в сеть. Этот запрос через цепочку АТМ-коммутаторов отправляется в пункт назначения для интерпретации. Если узел-адресат принимает запрос на соединение, то в АТМ-сети между двумя пунктами организуется виртуальный канал. UNI-устройства этих пунктов и промежуточные узлы сети (т.е. АТМ-коммутаторы) обеспечивают правильную маршрутизацию ячеек за счет того, что каждая АТМ-ячейка содержит два поля – идентификатор виртуального пути (VPI – Virtual Path Identifier) и идентификатор виртуального канала (VCI – Virtual Circuit Identifier). Информация, содержащаяся в полях VPI и VCI АТМ-ячейки, используется для однозначного решения задачи маршрутизации даже в случае, если у оконечной системы организовано несколько виртуальных связей.

Движущей силой развития технологии АТМ является ее эффективность в обслуживании низкоскоростных приложений и возможность работы на сравнительно низких скоростях (от 2 Мбит/с). Говорить о «конкуренции» сетей FR и АТМ неправомочно, так как в настоящее время FR является основным интерфейсом доступа к сетям АТМ, позволяющим обеспечивать передачу по сети АТМ разнородного трафика, динамически распределяя полосу пропускания.

Совмещение разнородных телекоммуникационных сетей, построенных на базе различных технологий (Х.25, FR, IP и др.), для предоставления пользователям всего спектра услуг в настоящее время возможно только при использовании технологии АТМ. Возможности этой технологии по совмещению различных ТСС возрастают, несмотря на их существенные различия, главные из которых состоят: в приспособленности к передаче разнородной информации (данных, голоса, видеоинформации), возможности полного использования имеющейся полосы пропускания и адаптации к качеству каналов связи, в наличии и качестве интерфейсного оборудования связи с другими сетями, в степени рассредоточенности элементов сети, а также в степени распространенности в том или ином регионе.

СПУТНИКОВЫЕ СЕТИ СВЯЗИ

Наши рекомендации