Вещественный состав земной коры.
2.6.1. Минералы
Все вещество земной коры и мантии Земли состоит из минералов, которые разнообразны по форме, строению, составу, распространенности и свойствам. Все горные породы состоят из минералов или продуктов их разрушения.
Самое древнее описание минералов относится к 500 г.до н.э., когда в китайском манускрипте Сан Хейдина «Древние сказания о горах и людях», присутствует рассказ о 17 минералах. Само слово минерал происходит от латинского минера, что означает кусок руды.
Минералами называются твердые продукты, образовавшиеся в результате природных физико-химических реакций, происходящих в литосфере, обладающих определенными химическим составом, кристаллической структурой, имеющих поверхности раздела.
Каждый минерал имеет поверхность раздела с соседними минералами в виде граней кристаллов или межзерновых границ произвольной формы. Совокупность минералов, обладающих одинаковой структурой и близким химическим составом, образует минеральный вид. Например, кристаллы и зерна, имеющие состав SiO2 и
одинаковую структуру, могут иметь разный цвет, размер, форму выделения и т.д., но в целом они относятся к одному и тому же минеральному виду – кварц. Минералы одинакового состава, но с разной структурой относятся к разным минеральным видам, например, графит и алмаз, имеющие один состав – углерод, но совершенно различные свойства алмаза и графита.
В настоящее время выделено более 3000 минеральных видов и почти столько же их разновидностей. Распространенность минералов в земной коре определяется распространенностью химических элементов (табл.4).
Таблица 4.
Наиболее распространенные (98%) химические элементы в земной коре.
Элемент | Символ | Ионы | % |
Кислород | O | O2- | 46,50 |
Кремний | Si | Si4+ | 25,70 |
Алюминий | Al | Al3+ | 7,65 |
Железо | Fe | Fe2+, Fe3+ | 6,24 |
Кальций | Ca | Ca2+ | 5,79 |
Магний | Mg | Mg2+ | 3,23 |
Натрий | Na | Na1+ | 1,81 |
Калий | K | K1+ | 1,34 |
По данным А.Б.Ронова и А.А.Ярошевского (1976) наиболее распространены в земной коре 8 химических элементов в весовых процентах составляющих в сумме 98% (табл. 2).
На долю Ti, C, H, Mn, S и других элементов приходится менее 2%. К числу редких элементов относятся Cu, Pb, B, Ag, As, однако будучи мало распространенными они способны образовать крупные месторождения. Некоторые элементы, например, Rb не образуют собственных минералов, а существуют в природе только в виде примесей. (табл. 5)
Минерал в виде кристалла – это твердые вещества, в котором атомы или молекулы расположены в строго заданном геометрическом порядке. Элементарной ячейкой называется самая маленькая часть кристалла, которая повторяется многократно в 3-х мерном пространстве. Формы природных кристаллов-минералов чрезвычайно разнообразны. Варианты размещения атомов и молекул в кристаллах были впервые
описаны более 100 лет назад в России Е.С.Федоровым и в Германии А.Шенфлисом, создавших теорию 230 пространственных групп симметрии. Все известные группы кристаллографической симметрии подразделяются на семь систем или сингоний ( в порядке понижения симметрии): 1) кубическая (элементарная ячейка – куб); 2) гексагональная (шестигранная призма); 3) тригональная (ромбоэдр); 4) тетрагональная (тетрагональная призма); 5) ромбическая (прямоугольный параллелепипед); 6) моноклинная (параллелепипед с одним углом между гранями, отличающимися от прямого); 7) триклинная (косоугольный параллелепипед).
Таблица 5
Некоторые наиболее распространенные химические элементы, ионы и группы в минералах
Элементы | Символ | Анион | Катион | Группа | Символ |
Алюминий | Al | Al3+ | |||
Кальций | Ca | Ca2+ | |||
Углерод | C | C4+ | Карбонат | (CO3)2- | |
Хлор | Cl | Cl- | |||
Медь | Cu | Cu2+ | |||
Фтор | F | F- | |||
Водород | H | H+ | Гидроксил | (OH)- | |
Железо | Fe | Fe2+, Fe3+ | |||
Свинец | Pb | Pb2+ | |||
Магний | Mg | Mg2+ | |||
Кислород | O | O2- | |||
Фосфор | P | P3- | Фосфаты | (PO4)3- | |
Калий | K | K+ | |||
Кремний | Si | Si4+ | Силикаты | (SiO4)4- | |
Натрий | Na | Na+ | |||
Сера | S | S2- | сульфаты | (SO4)2- | |
Цинк | Zn | Zn2+ |
Все минералы обладают кристаллической структурой – упорядоченным расположением атомов, что называется кристаллической решеткой (рис. 2.6.1). Атомы
или ионы удерживаются в узлах кристаллической решетки силами различных типов химических связей: 1) ионной; 2) ковалентной; 3) металлической; 4) ван-дер-ваальсовой (остаточной); 5) водородной. Бывает, что минерал обладает несколькими типами связи. Тогда образуются компактные группы атомов, между которыми осуществляется более сильная связь. Например, группы [ SiO4]-4 в структуре силикатов, [СО3]-2 в карбонатах. Одно и то же сочетание химических элементов может кристаллизоваться в различные структуры и образовывать разные минералы. Это явление называется полиморфизмом (полиморфаз – греч., многообразный). Например, модификации С (алмаз, графит); калиевого полевого шпата (ортоклаз, микроклин); а также FeS2 (пирит, марказит); СаСО3 (кальцит, арагонит); кварца и др. Кристаллы минералов бывают анизотропными (неравносвойственными), т.е. со свойствами одинаковыми с параллельных направлениях и различных непараллельных.
Изотропными (равносвойственными) называются вещества, например, аморфные, в которых все физические свойства одинаковы по всем направлениям.
Рис. 2.6.1. Кристаллические решетки алмаза (слева) и графита (справа) (А). Форма решеток определяет свойства минералов (Б). Ионы хлора и натрия в кристалле каменной соли
Одним из факторов, определяющих разнообразный состав минералов является изоморфизм,способность одних элементов замещать другие в структуре минералов безизменения самой структуры. Замещение может быть изовалентным, если элементы
одинаковой валентности замещают друг друга – Mg+2 ↔ Fe+2; Mn+2 ↔ Fe+2 или гетеровалентным, когда замещающие ионы имеют различную валентность.
Важную роль в составе минералов играет вода и гидроксильные группы, в зависимости от положения которых в кристаллической структуре различают воду: 1) конституционную; 2) кристаллизационную и 3) адсорбционную. 1-ая связана со структурой минералов теснее всего и входит в состав многих силикатов, окислов и кислородных солей в виде ОН-. 2-ая - занимает крупные полости в структуре алюмосиликатов и при нагревании постепенно отделяется. 3- ий тип воды отделяется от минералов при нагревании до 110°С и является самой распространенной разновидностью.
Минералы чаще всего образуют срастания или агрегаты, в каждом из которых отдельные минералы характеризуются внешним обликом – размером и формой выделения. Если минерал хорошо огранен он называется идиоморфным, а если обладает направленными очертаниями – ксеноморфным.
По своему происхождению минералы подразделяются на эндогенные (эндо – греч., внутри), связанные с земной корой и мантией и экзогенными (экзо – греч., снаружи), образующиеся на поверхности земной коры.
Современная систематика минералов.
Хотя минералов известно более 3000, не более чем 50 из них называются главными породообразующими, имеющими наибольшее распространение в земной коре. Остальные минералы присутствуют лишь в виде примесей и называются акцессорными (акцесориус – лат., дополнительный). Среди минералов на основе структурных и химических признаков выделяется несколько основных классов ( по А.А.Ульянову, 2000).
1. Самородное элементы и интерметаллические соединения. В настоящее время известно около 30 элементов с самородном состоянии, подразделяющиеся на металлы (золото, платина, серебро, медь); полуметаллы (мышьяк, сурьма); неметаллы (сера, графит, алмаз).
2.Сульфиды и их аналоги. Шире всего развиты сернистые соединения – сульфиды, образующиеся из гидротермальных растворов: пирит FeS2; халькопирит CuFeS2; галенит
PbS; сфалерит ZnS.
3. Галогениды представлены более, чем 100 минералами – солями галогеноводородных кислот: HF, HCl, HВr, HI. Шире всего распространены хлориды Na,
K и Mg: галит NaCl; сильвин KCl; карналит MgCl2⋅ KCl ⋅ 6H2O; фториды Ca, Na и Al, например, флюорит CaF2.
4. Оксиды и гидрооксиды широко распространены и насчитывают около 200 минералов оксидов и гидрооксидов металлов и реже – полуметаллов, составляющих по
массе 5% литосферы. Особенно развит свободный кремнезем SiO2 – кварц и его многочисленные разновидности, опал SiO2⋅nН2О и другие, всегда тесно связанные с силикатами. В глубоких частях земной коры образуются оксиды Fe, Ti, Ta, Nb, Nb, Al, Cr, Sn, U и другие.
В класс оксидов попадают важные рудные минералы: гематит Fe2O3, магнетит
Fe2+Fe23+O4, пиролюзит MnO2, касситерит SnO2, рутилTiO2, хромит FeCr2O4, ильменит
FeTiO3, уранинит UO2, а из гидрооксидов - брусит Mg (OH)2, гётит HFеO2,
гидрогётит HFeO2⋅n H2O, гиббсит Al(OH)3.
5. Карбонаты. Содержание минералов класса карбонатов составляет в земной коре
1,5% по массе. Важное значение в структуре карбонатов имеют анионные группы [СО3]-2, изолированные друг от друга катионами. К карбонатам относятся: кальцит СаСО3, доломит CaMg(CO3)2, сидерит FeCO3, магнезит MgCO3.Карбонат меди представлен малахитом Cu2(CO3)(OH)2;карбонат натрия- содой Na2[CO3]⋅10H2O.Ионы–хромофоры (красители) окрашивают карбонаты Cu в зеленые и синие цвета, U – в желтые, Fe – в коричневые, а другие карбонаты бесцветные. Некоторые карбонаты имеют органогенное происхождение, другие связаны с гидротермальными растворами, третьи – с минеральными источниками.
6. Сульфаты, хроматы, молибдаты и вольфраматы.
Сульфаты – это соли серной кислоты (H2SO4), входящие в состав 300 минералов и составляющие 0,1% по весу в земной коре. Главную роль в структуре сульфатов играет крупный анион [SO4]2-. Среди сульфатов шире всего распространены гипс CaSO4⋅ 2H2O, ангидрит CaSO4, барит BaSO4, мирабилит Na2SO4⋅10H2O, целестин SrSO4, алунит (K,Na) Аl3[SO4]2(OH)6.
Хроматы представляют собой соли ортохромовой кислоты (H2CrO4) и встречаются очень редко, например, в крокоите PbCrO4.
Молибдаты – это соли молибденовой кислоты (H2MoO4), образующиеся на поверхности, в зонах окисления рудных месторождений – вульфенит PbMoO4.
Вольфраматы – соли, соответственно, вольфрамовой кислоты (H2WO4) и к промышленно важным минералам относятся вольфрамит (F,Mn) WO4 и шеелит CaWO4.
7. Фосфаты,арсенаты и ванадаты. Все эти минералы принадлежат солям ортофосфорной (H3PO4), мышьяковой (H3AsO3) и ванадиевой (H3VO3) кислот. Хотя их распространенность в литосфере невелика – 0,7% по массе, всего этих минеральных
видов насчитывается более 450. Наиболее характерным и устойчивым минералом фосфатов является апатит Ca5[PO4]3 (Fe,Cl,OH), а также монацит Ce[PO4]. К ванадатам
относятся урановые слюдки, например тюямунит Ca(UO2)2[VO4]2 ⋅ 8 H2O, а к арсенатам редкий минерал миметезит Pb5[AsO4]3Cl. В большинстве случаев все эти минералы образуются в близповерхностных условиях, вследствие разложения органических остатков (фосфаты), окисления мышьяковых соединений (арсенаты) и рассеянного в осадочных породах ванадия (ванадаты). Только апатит связан с магматическими и метаморфическими породами.
8. Силикаты Класс силикатов содержит наиболее распространенные породообразующие минералы, которые слагают 90% литосферы. Самым важным элементом класса силикатов является четырехвалентный кремний, находящийся в окружении 4-х атомов кислорода, расположенных в вершинах тетраэдра (тетра – греч.,
четыре, гедра – грань). Эти кремнекислородные тетраэдры (КТ) [SiO4]4- представляют собой те элементарные структуры, из которых построены все силикаты. КТ имеет 4 свободные валентные связи. Именно за их счет и происходит присоединение ионов Al, Fe, Mg, K, Ca, Na и других. КТ способны группироваться друг с другом, образуя сложные кремнекислородные кластеры (табл. 6) (рис.2.6.2).
Рис. 2.6.2. Строение кремнекислородного тетраэдра: а – единичный; б – соединенные в цепочку
Островные силикаты содержат в себе изолированные КТ [SiO4]4- с присоединенными к ним различными ионами Типичными силикатами являются оливины (Mg,Fe)2 [SiO4], гранаты (Mg, Fe, Cа, Mn)3(Аl, Fe, Cr)2[SiO4]3.
Таблица 6
Силикатные минералы
Структура | Группировка | Минерал | Примеры |
силикатов | |||
Островная | (SiO4)4- | Оливин | Форстерит |
Mg2SiO4 | |||
Цепочечная | (SiO3)2- | Пироксен | Авгит |
(одна цепь) | (Ca(Mg,Fe,Al)⋅ | ||
⋅(Si,Al)2O6) | |||
Ленточная | (Si4O11)6- | Амфибол | Роговая обманка |
(двойная цепь) | (Ca,Na)2(Mg,Fe2+)4 | ||
(Al,Fe3+)⋅(OH)2⋅ | |||
[(Al,Si)4O11]2 | |||
Листовая | (Si2O5)2- | Слюда | Мусковит |
(слоевая) | KAl2(OH)2⋅ | ||
[AlSi3O11] | |||
Каркасная | (SiO) | Кварц | Кварц (SiO2) |
Полевой шпат | Ортоклаз | ||
(KAlSi3O8) |
Рис. 2.6.3. Кристаллические решетки: а - вюрцита (ZnS) и б - перовскита ( СаТiО3)
В цепочечных силикатах КТ соединяются в непрерывные цепочки. Наиболее типичными минералами этой группы являются пироксены, как ромбические – гиперстен (Mg,Fe)2[
Si2O6], так и моноклинные – авгит (Ca,Na)(Mg,Fe2+, Al,Fe3+)[(Si,Al)2O6], диопсид Ca, Mg [Si2O6].
Если цепочки соединяются друг с другом, то образуются ленточные силикаты, представителем которых являются широко распространенная роговая обманка (Ca,Na)2 (Mg,Fe2+)4 (Al,Fe3+) (OH)2 [ (Al,Si)4O11]2.
Слоистые или листовые силикаты характеризуются структурой, в которой КТ соединены друг с другом в виде сплошного, непрерывного листа. К листовым силикатам принадлежат слюды: мусковит KАl2(OH)2[AlSi3O10], биотит K(Mg,Fe)3(OH,F)2[AlSi3O10], серицит.Слюды очень широко распространены в горных породах всех типов.
К листовым силикатам также относятся тальк Mg3(OH)2[ Si4O10], серпентин Mg6(OH)8[Si4O10] и хлорит. Эти минералы образуются в результате метаморфических процессов.
Важную группу листовых силикатов представляют весьма распространенные глинистые минералы, образующиеся при выветривании различных горных, но особенно магматических и метаморфических пород. В эту группу входят: каолинит Al4(OH)8[Si4O10] и монтмориллонит (Mg3,Al2)[Si4O10]⋅(OH)2⋅nH2O,являющиеся одними из главных минералов в корах выветривания. К листовым силикатам относятся также гидрослюды,т.е.слюды с присоединенными к нимH2O,ОН и распространенный минерал глауконит, имеющий сложную формулу и представляющий собой водный алюмосиликат Fe,K,Al.
Рис. 2.6.4. Структуры кремнекислородных тетраэдров, образующих различные силикаты
Каркасные силикаты представляют собой одну из важнейших групп породообразующих минералов – полевых шпатов. Они составляют более 50% в земной коре. Полевые шпаты подразделяются на две группы: кальциево-натриевые или плагиоклазы и калиево-натриевые щелочные полевые шпаты. Плагиоклазы представляют собой непрерывный твердый раствор анортита (CaAl2Si2O8) и альбита (NaAlSi3O8) с полным гетеровалентным изоморфизмом. Плагиоклазы подразделяются на кислые, средние и основные по содержанию в них анортита,при этом количество анортита(в%)определяет номер плагиоклаза.
Кислые: Альбит 0-10% An; олигоклаз 10-30% An
Средние: Андезин 30-50% An;
Основные: Лабрадор 50-70% An; битовнит 70-90% An; анортит 90-100% An Плагиоклазы очень широко распространены в магматических и метаморфических
породах.
Среди калиевых полевых шпатов различают 4 типа: существенно калиевые – санидин, ортоклаз, микроклин; натриево-калиевые–анортоклаз.
К группе каркасных силикатов относятся фельдшпатоиды – минералы, образующиеся щелочных магматических горных породах при недостатке SiO2. Это прежде всего нефелин (NaAlSiO4), лейцит (KАlSi2O6).
2.6.2. Горные породы.
Горные породы представляют собой естественные минеральные агрегаты,формирующиеся в литосфере или на поверхности Земли в ходе различных геологических процессов. Основную массу горных пород слагают породообразующие минералы, состав
и строение которых отражают условия образования пород. Кроме этих минералов в породах могут присутствовать и другие, более редкие (акцессорные) минералы, состав и количество которых в породах непостоянны.
Строение горных пород характеризуется структурой и текстурой. Структура определяется состоянием минерального вещества, слагающего породу (кристаллическое, аморфное, обломочное), размером и формой кристаллических зерен или обломков, входящих в ее состав, их взаимоотношениями.
Под текстурой породы понимают расположение в пространстве слагающих ее минеральных агрегатов или частиц горной породы (кристаллических зерен, обломков и др.). Выделяют плотную и пористую текстуры, однородную или массивную и ориентированную (слоистую, сланцеватую и др.).
В основу классификации горных пород положен генетический признак. По происхождению выделяют: 1) магматические, или изверженные, горные породы, связанные с застыванием в различных условиях силикатного расплава - магмы и лавы; 2) осадочные горные породы, образующиеся на поверхности в результате деятельности различных экзогенных факторов; 3) метаморфические горные породы, возникающие при переработке магматических , осадочных, а также ранее образованных метаморфических пород в глубинных условиях при воздействии высоких температур и давлений, а также различных жидких и газообразных веществ (флюидов), поднимающихся с глубины.
Магматические горные породынаряду с метаморфическими слагают основнуюмассу земной коры, однако на современной поверхности материков области их распространения сравнительно невелики. В земной коре они образуют тела разнообразной формы и размеров, состав и строение которых зависит от химического состава исходной магмы и условий ее застывания. В основе классификации магматических горных пород лежит их химический состав. Учитывается прежде всего содержание оксида кремния, по которому магматические породы делятся на четыре группы: ультраосновные породы, содержащие менее 45 % SiO2 , основные - 45-52%, средние -52-65 % и кислые - более 65 %.
В зависимости от условий, в которых происходило застывание магмы, магматические породы делятся на ряд групп: породы глубинные, или интрузивные, образовавшиеся при застывании магмы на глубине, и породы излившиеся, или эффузивные,связанные с охлаждением магмы,излившейся на поверхность,т.е.лавы.
Ультраосновные породы (гипербазиты,или ультрамафиты)в строении земнойкоры играют незначительную роль, причем наиболее редки эффузивные аналоги этой группы (пикриты и коматииты). Все ультраосновные породы обладают большой плотностью (3,0-3,4), обусловленной их минеральным составом.
Основные породы широко распространены в земной коре,особенно их эффузивныеразновидности (базальты).
Габбро -глубинные интрузивные породы с полнокристаллической средне-и
крупнозернистой структурой.
Базальты -черные или темно-серые вулканические породы.Базальты залегают ввиде лавовых потоков и покровов, нередко достигающих значительной мощности и покрывающих большие пространства (десятки тысяч км2) как на континентах, так и на дне океанов.
Средние породы характеризуются большим содержанием светлых минералов,чемцветных, из которых наиболее типична роговая обманка. Такое соотношение минералов определяет общую светлую окраску породы, на фоне которой выделяются темно-окрашенные минералы.
Диориты -глубинные интрузивные породы,обладающие полнокристаллическойструктурой. Излившимися аналогами диоритов являются широко распространенные андезиты, обладающие обычно порфировой структурой.
Для всех кислых пород характерно наличие кварца. Кроме того, в значительных количествах присутствуют полевые шпаты - калиевые и кислые плагиоклазы.
Граниты -глубинные интрузивные породы,обладающие полнокристаллической,обычно среднезернистой, реже крупно- и мелкозернистой структурой. Породообразующие минералы - кварц (около 25-35 % ), калиевые полевые шпаты (35-40 %) и кислые плагиоклазы (около 20-25 %), из цветных минералов - биотит, в некоторых разностях частично замещающийся мусковитом. Излившимся аналогом гранитов являются риолиты, аналогами гранодиоритов - дациты.
Осадочные горные породы.На поверхности Земли в результате действияразличных экзогенных, т.е. внешних, факторов образуются осадки, которые в дальнейшем уплотняются, претерпевают физико-химические изменения - диагенез, и превращаются в осадочные горные породы, тонким чехлом покрывают около 75 % поверхности континентов. Многие из них являются полезными ископаемыми, другие - содержат таковые.
Среди осадочных пород выделяются три группы:
1) обломочные породы,возникающие в результате механического разрушениякаких-либо пород и накопления образовавшихся обломков; 2) глинистые породы, являющиеся продуктом преимущественно химического разрушения пород и накопления возникших при этом глинистых минералов; 3) химические (хемогенные) и органогенные породы,образовавшиеся в результате химических и биологических процессов.Обломочные породы по размерам обломков подразделяются на несколько типов.
Грубообломочные породы. В зависимости от формы и размеров обломков среди пород этого гранулометрического типа выделяются следующие: глыбы и валуны - соответственно угловатые и окатанные обломки размером свыше 200 мм в поперечнике; щебень и галька -при размерах обломков от200до10мм; дресва и гравий -при размерахобломков от 10 до 2 мм.
Грубообломочные породы,представляющие собой сцементированные неокатанныеобломки, называются брекчиями и дресвяниками, сцементированные окатанные обломки -
конгломератами и гравелитами.
К среднеобломочным породам относятся распространенные в земной коре пески и песчаники.Первые представляют собой скопление несцементированных окатанныхобломков песчаной размерности, вторые - таких- же, но сцементированных.
Мелкообломочные породы. Рыхлые скопления мелких частиц размерами от 0,05 до 0,005 мм называют алевритами. Одним из широко распространенных представителей алевритов является лесс - светлая палево-желтая порода, состоящая преимущественно из остроугольных обломков кварца и меньше - полевых шпатов с примесью глинистых частиц и извести.
Глинистые породы. Наиболее распространенными осадочными породами являются глинистые, на долю которых приходится больше 50 % объема всех осадочных пород. Глинистые породы в основном состоят из мельчайших (меньше 0,02 мм) кристаллических (реже аморфных ) зерен глинистых минералов.
Химические и органогенные породы образуются преимущественно в водных бассейнах.
На долю карбонатных пород в осадочной оболочке Земли приходится около 14 %. Главный породообразующий минерал этих пород - кальцит, в меньшей степени - доломит. Соответственно, наиболее распространенными среди карбонатных пород являются известняки -мономинеральные породы,состоящие из кальцита.
Кремнистые породы состоят главным образом,из опала и халцедона.Так же,каккарбонатные, они могут иметь биогенное, химическое и смешанное происхождение.
К биогенным породам относятся диатомиты и радиоляриты, состоящие из мельчайших, не различимых невооруженным глазом скелетных остатков диатомовых водорослей и радиолярий, скрепленных опаловым цементом.
Каустобиолиты (греч. "каустос" -горючий, "биос" -жизнь)образуются израстительных и животных остатков, преобразованных под влиянием различных геологических факторов. Эти породы обладают горючими свойствами, чем и обусловлено их важное практическое значение. К ним относятся породы ряда углей (торф, ископаемые угли), горючие сланцы.
Метаморфические горные породы-результат преобразования пород разногогенезиса, приводящего к изменению первичной структуры, текстуры и минерального состава в соответствии с новой физико-химической обстановкой. Главными факторами (агентами) метаморфизма являются эндогенное тепло, всестороннее (литостатическое) давление, химическое воздействие флюидов. Постепенность нарастания интенсивности факторов метаморфизма позволяет наблюдать все переходы от первично осадочных или магматических пород к образующимся по ним метаморфическим породам. Метаморфические породы обладают полнокристаллической структурой. Размеры кристаллических зерен, как правило, увеличиваются по мере роста температур метаморфизма.
Рис. 2.6.5. Круговорот горных пород | |||||||
Земная кора является основным объектом | |||||||
изучения в геологии. Поэтому мы приведем | |||||||
средние химические составы континентальной и | |||||||
океанической коры, а также земной коры в | |||||||
целом, согласно | расчетам А.А.Ярошевского | ||||||
(табл.7) | |||||||
Таблица 7. | |||||||
Тип коры | Континентальная | Океаническая | В целом | ||||
Масса 1024 г | 22.32 | 6.14 | 28.46 | ||||
SiO2 | 54.55 | 49.89 | 53.54 | ||||
TiO2 | 0.855 | 1.381 | 0.97 | ||||
Al2 O3 | 16.17 | 14.81 | 15.87 | ||||
Fe 2O3 | 0.92 | 1.79 | 1.11 | ||||
FeO | 7.32 | 8.00 | 7.60 | ||||
MnO | 0.159 | 0.181 | 0.164 | ||||
MgO | 4.91 | 7.38 | 5.44 | ||||
CaO | 8.72 | 11.93 | 9.41 | ||||
Na 2O | 2.74 | 2.38 | 2.66 | ||||
K 2O | 1.32 | 0.23 | 1.09 | ||||
P 2O 5 | 0.201 | 0.143 | 0.189 | ||||
Cорг. | 0.07 | 0.06 | |||||
CO2 | 1.14 | 0.42 | 0.99 | ||||
SO3 | 0.063 | 0.010 | 0.052 | ||||
S2- | 0.049 | 0.001 | 0.039 | ||||
Cl | 0.068 | 0.004 | 0.055 | ||||
F | 0.025 | 0.002 | 0.020 | ||||
H 2O | 0.77 | 0.85 | 0.78 | ||||
Сумма | 100.056 | 100.002 | 100.039 | ||||
Строение земной коры.
В предыдущем разделе было установлено общее внутреннее строение земного шара, поверхность которого покрывает тоненькая, но чрезвычайно важная «пленка», называемая земной корой, имеющей в среднем мощность около 40 км и составляющей всего лишь 1/160 от радиуса Земли. Земная кора вместе с частью верхней мантии до астеносферного слоя называется литосферой, а литосфера, вместе с астеносферой образует тектоносферу, верхнюю оболочку земного шара во многом ответственную за процессы, происходящие в земной коре. Строение земной коры, мощность которой изменяется практически от 0 до 70-75 км и повсеместно имеет четкую нижнюю границу – поверхность Мохоровичича или «М», принципиально отличается на континентах и в океанах.
Сведения о коре мы получаем от непосредственного наблюдения пород на поверхности Земли, особенно на щитах древних платформ, из керна глубоких и сверхглубоких скважин, как на суше, так и в океанах; ксенолитов в вулканических породах; драгированием океанского дна и сейсмических исследований, дающих наиболее важную информацию о глубоких горизонтах земной коры.
Океаническая кора обладает 3-х слойным строением (сверху вниз) (рис. 2.7.1):
1-й слой представлен осадочными породами,в глубоководных котловинах непревышающей в мощности 1 км и до 15 км вблизи континентов.
Рис. 2.7.1. Схемы строения земной коры. I – континентальная кора, слои: 1 – осадочный, 2
– гранитно-метаморфический, 3 – гранулито-базитовый, 4 – перидотиты верхней мантии. II – океаническая кора, слои: 1 – осадочный, 2 – базальтовых подушечных лав, 3 – комплекса параллельных даек, 4 – габбро, 5 – перидотиты верхней мантии. М – граница Мохоровичича
Породы представлены карбонатными, глинистыми и кремнистыми породами.
Важно подчеркнуть, что нигде в океанах возраст осадков не превышает 170-180 млн. лет.
2-й слой сложен,в основном,базальтовыми пиллоу(подушечными)лавами,стонкими прослоями осадочных пород. В нижней части этого слоя располагается своеобразный комплекс параллельных даек базальтового состава, служившим подводящими каналами для подушечных лав.
3-й слой представлен кристаллическими магматическими породами,главнымобразом, основного состава – габбро и реже ультраосновного, располагающимся в нижней части слоя, глубже которого располагается поверхность М и верхняя мантия.
Очень важно подчеркнуть, что кора океанического типа развита не только в океанах и глубоководных впадинах внутренних морей, но встречается также и в складчатых поясах на суше в виде фрагментов пород офиолитовой ассоциации, парагенезис (сонохождение) которых (кремнистые породы – базальтовые лавы – основные
и ультраосновные породы) был впервые выделен в 20-х годах ХХ в. Г.Штейнманом в Лигурийских Альпах на СЗ Италии.
Рис. 2.7.2. Строение океанической земной коры
Континентальная земная кора также имеет 3-х членное строение, но структура ее иная (сверху вниз):
1-й осадочно-вулканогенный слой обладает мощностью от0на щитах платформ до
25 км в глубоких впадинах, например, в Прикаспийской. Возраст осадочного слоя колеблется от раннего протерозоя до четвертичного.
2-й слой образован различными метаморфическими породами:кристаллическимисланцами и гнейсами, а также гранитными интрузиями. Мощность слоя изменятся от 15 до 30 км в различных стр