По характеру проявления ошибки бывают систематические и случайные.
ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
1. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ ОШИБОК
Абсолютная и относительная ошибки
Никакую физическую величину невозможно измерить абсолютно точно: как бы тщательно ни был поставлен опыт, измеренное значение величины х будет отличаться от ее истинного значения Х. Разница между этими значениями представляет собой абсолютную ошибку (или абсолютную погрешность*) измерения D х :
D х = х – Х. (1)
Абсолютная погрешность является размерной величиной: она выражается в тех же единицах, что и сама измеряемая величина (например, абсолютная погрешность измерения длины выражается в метрах, силы тока – в амперах и т.д.). Как следует из выражения (1), D х может быть как положительной, так и отрицательной величиной.
Хотя величина D х показывает, насколько измеренное значение отличается от истинного, одной лишь абсолютной ошибкой нельзя полностью характеризовать точность проделанного измерения. Пусть, например, известно, что абсолютная погрешность измерения расстояния равна 1 м. Если измерялось расстояние между географическими пунктами (порядка нескольких километров), то точность такого измерения следует признать весьма высокой; если же измерялись размеры помещения (не превышающие десятка метров), то измерение является грубым. Для характеристики точности существует понятие относительной ошибки (или относительной погрешности) Е, представляющей собой отношение модуля абсолютной ошибки к измеряемой величине:
. (2)
Очевидно, что относительная погрешность – величина безразмерная, чаще всего ее выражают в процентах.
При определении ошибок измерений важно иметь в виду следующее. Выражения (1) и (2) содержат истинное значение измеряемой величины Х, которое точно знать невозможно: поэтому значения D х и Е в принципе не могут быть рассчитаны точно. Можно лишь оценить эти значения, т.е. найти их приближенно с той или иной степенью достоверности. Поэтому все расчеты, связанные с определением погрешностей, должны носить приближенный (оценочный) характер.
Случайная и приборная погрешности
Разнообразные ошибки, возникающие при измерениях, можно классифицировать как по их происхождению, так и по характеру их проявления.
По происхождению ошибки делятся на инструментальные и методические.
Инструментальные погрешности обусловлены несовершенством применяемых измерительных приборов и приспособлений. Эти погрешности могут быть уменьшены за счет применения более точных приборов. Так, размер детали можно измерить линейкой или штанген-циркулем. Очевидно, что во втором случае ошибка измерения меньше, чем в первом.
Методические погрешности возникают из-за того, что реальные физические процессы всегда в той или иной степени отличаются от их теоретических моделей. Например, формула для периода колебаний математического маятника в точности верна лишь при бесконечно малой амплитуде колебаний; формула Стокса, определяющая силу трения при движении шарика в вязкой жидкости, справедлива только в случае идеально сферической формы и т.д. Обнаружить и учесть методическую погрешность можно путем измерения той же величины совершенно иным независимым методом.
По характеру проявления ошибки бывают систематические и случайные.
Систематическая погрешность может быть обусловлена как приборами, так и методикой измерения. Она имеет две характерные особенности. Во-первых, систематическая погрешность всегда либо положительна, либо отрицательна и не меняет своего знака от опыта к опыту. Во-вторых, систематическую погрешность нельзя уменьшить за счет увеличения числа измерений. Например, если при отсутствии внешних воздействий стрелка измерительного прибора показывает величину х0 , отличную от нуля, то во всех дальнейших измерениях будет присутствовать систематическая ошибка, равная х0 .
Случайная ошибка также может быть как инструментальной, так и методической. Причину ее появления установить трудно, а чаще всего – невозможно (это могут быть различные помехи, случайные толчки, вибрации, неверно взятый отсчет по прибору и т.д.). Случайная погрешность бывает и положительной и отрицательной, причем непредсказуемо изменяет свой знак от опыта к опыту. Значение ее можно уменьшить путем увеличения числа измерений.
Детальный анализ погрешностей измерения представляет собой сложную задачу, для решения которой не существует единого рецепта. Поэтому в каждом конкретном случае этот анализ проводят по-разному. Однако, в первом приближении, если исключена систематическая ошибка, то остальные можно условно свести к следующим двум видам: приборная и случайная.
Приборной погрешностью в дальнейшем будем называть случайную ошибку, обусловленную измерительными приборами и приспособлениями, а случайной – ошибку, причина появления которой неизвестна. Приборную погрешность измерения величины х будем обозначать как d х, случайную – как Ds x.