Общее количество воды, которое может быть удержано называется полевой влагоемкостью.
Содержание влаги в почве, при котором растение не удовлетворяет свою потребность в воде, называется коэффициентом завядания. Для одного и того же вида растения на разных почвах коэффициент завядания неодинаков и составляет, например, для тяжелой глины 16,3%, а для крупного песка— 0,9%.
Следовательно, общее количество воды в почве не может характеризовать степень обеспеченности растений влагой. Для ее определения из общего количества воды необходимо вычесть коэффициент завядания. Однако физически доступная вода почвы физиологически не всегда доступна растениям из-за низкой температуры почвы, недостатка кислорода в почвенной воде и почвенном воздухе, кислотности почвы, высокой концентрации растворенных в почвенной воде минеральных солей. Несоответствие между всасыванием воды корнями и отдачей ее листьями приводит к завяданию растений. От количества физиологически доступной воды зависит развитие не только надземных частей, но и корневой системы растений. У растений, произрастающих на сухих почвах, корневая система, как правило, более разветвлена, более мощная, чем на влажных (рис. 5.29).
Рис. 5.29. Корневая система озимой пшеницы
(по В. Г. Хржановскому и др., 1994):
1 — при большом количестве осадков; 2 — при среднем;
3 — при малом
Одним из источников почвенной влаги являются грунтовые воды. При низком их уровне капиллярная вода не достигает почвы и не влияет на ее водный режим. Увлажнение почвы за счет только атмосферных осадков вызывает сильные колебания ее влажности, что часто отрицательно влияет на растения. Вредно сказывается и слишком высокий уровень грунтовых вод, потому, что это приводит к переувлажнению почвы, к обеднению кислородом и обогащению минеральными солями. Постоянное увлажнение почвы независимо от капризов погоды обеспечивает оптимальный уровень грунтовых вод.
Температурный режим.
Отличительной чертой наземно-воздушной среды является большой размах температурных колебаний. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Например, сезонный размах температуры в пустынях Средней Азии 68—77°С, а суточный 25— 38°С. В окрестностях Якутска среднеянварская температура воздуха - 43°С, среднеиюльская +19°С, а годовой размах от-64 до +35°С. Еще более значительны колебания температуры на поверхности почвы.
Наземные растения занимают зону, прилежащую к поверхности почвы, т. е. к «поверхности раздела», на которой совершается переход падающих лучей из одной среды в другую или по-другому — из прозрачной в непрозрачную. На этой поверхности создается особый тепловой режим: днем — сильное нагревание благодаря поглощению тепловых лучей, ночью — сильное охлаждение вследствие лучеиспускания.Отсюда приземный слой воздуха испытывает наиболее резкие суточные колебания температур.
Тепловой режим местообитания растений, например, характеризуется на основе измерений температуры непосредственно в растительном покрове. В травянистых сообществах измерения делают внутри и на поверхности травостоя, а в лесах, где существует определенный вертикальный градиент температуры, — в ряде точек на разных высотах.
Устойчивость к температурным изменениям среды у наземных организмов различна и зависит от конкретного местообитания, где протекает их жизнь. Так, наземные листостебельные растения в большинстве своем растут в широком температурном диапазоне, т. е. являются эвритермными. Их жизненный интервал в активном состоянии простирается, как правило, от 5 до 55°С, при этом между 5 и 40°С эти растения продуктивны. Растения континентальных областей, для которых характерен четкий суточный ход температуры, развиваются лучше всего, когда ночь на 10—15°С холоднее, чем день. Это относится к большинству растений умеренной зоны — при разнице температур 5—10°С, а тропические растения при еще меньшей амплитуде — около 3°С (рис. 5.30).
Рис. 5.30. Области оптимальных температур для роста и
развития различных растений (по Went, 1957)
У пойкилотермных организмов с повышением температуры (Т) продолжительность развития (t) уменьшается все быстрее. Скорость развития Vt может быть выражена формулой Vt = 100/t.
Для достижения определенной стадии развития - окукливания, имагинальной стадии, всегда требуется определенная сумма температур. Произведение эффективной температуры (температуры выше нулевого пункта развития, т. е. Т—То) на длительность развития (t) дает специфическую для данного вида термалъную постоянную развития c=t(T—То). Используя данное уравнение, можно рассчитать время наступления определенной стадии развития, например, вредителя растения, на, которой эффективна с ним борьба.
Растения как пойкилотермные организмы не имеют собственной стабильной температуры тела. Их температура определяется тепловым балансом, т. е. соотношением поглощения и отдачи энергии. Эти величины зависятсвойств как окружающей среды(размеры прихода радиации, температура окружающего воздуха и его движения), так и самих растений (окраска и другие оптические свойства растения, величина и расположение листьев и др.). Первостепенную роль играет охлаждающее действие транспирации, которая препятствует сильным перегревам растений в жарких местообитаниях. Как результат действия вышеуказанных причин, температура растений обычно отличается (нередко довольно значительно) от температуры окружающего воздуха. Здесь возможны три ситуации: температура растения выше температуры окружающего воздуха, ниже ее, равна или очень близка к ней. Превышение температуры растений над температурой воздуха встречается не только в сильно прогреваемых, но и в более холодных местообитаниях. Этому способствуют темная окраска или иные оптические свойства растений, которые увеличивают поглощение солнечной радиации, а также анатомо-морфологические особенности, способствующие снижению транспирации. Довольно заметно могут нагреваться арктические растения (рис. 5.31).
Другим примером является карликовая ива —на Аляске, у которой днем листья теплее воздуха на 2—11 °С и даже в ночные часы полярного «круглосуточного дня» — на 1—3°С.
Ранневесенним эфемероидам, так называемым «подснежникам», нагревание листьев обеспечивает возможность достаточно интенсивного фотосинтеза в солнечные, но еще холодные весенние дни. Повышение температуры растений экологически очень важно, так как физиологические процессы при этом получают независимость в известных пределах от окружающего теплового фона.
Рис. 5.31. Распределение температур в розеточном растении арктической тундры (Novosieversia glacialis) в солнечное июньское утро при температуре воздуха 11,7°С (по Б. А. Тихомирову, 1963)
Справа — интенсивность процессов жизнедеятельности в биосфере: 1 — самый холодный слой воздуха; 2 — верхняя граница прироста побегов; 3, 4, 5 — зона наибольшей активности жизненных процессов и максимального накопления органического вещества; 6 — уровень вечной мерзлоты и нижняя граница укоренения; 7 — область наиболее низких температур почвы
Снижение температуры растений по сравнению с окружающим воздухом чаще всего отмечается в сильно освещенных и прогреваемых участках наземной сферы (пустыня, степь), где листовая поверхность растений сильно редуцирована, а усиленная транспирация способствует удалению избытка тепла и предотвращает перегрев. В общих чертах можно сказать, что в жарких местообитаниях температура надземных частей растений ниже, а в холодных — выше температуры воздуха. Совпадение температуры растений с температурой окружающего воздуха встречается реже — в условиях, исключающих сильный приток радиации и интенсивную транспирацию, например, у травянистых растений под пологом лесов, а на открытых участках — в пасмурную погоду или при дожде.