Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до −88°С. Верхней границей мезосферы является мезопауза.
Лекция №5-6. Атмосфера.
1. Происхождение атмосферы. Строение атмосферы, ее состав.
2. Солнечная радиация. Особенности нагревания суши и воды. Температура воздуха, инверсия температур.
3. Понятие о давлении. Барометрическая ступень. Ветер.
4. Влажность воздуха, явления конденсации и сублемации. Атмосферные осадки. Влагооборот.
5.Процессы циркуляции атмосферы (общая и местная циркуляция). Погода и климат. Типы воздушных масс.
Атмосфера «атмос» – пар, «сфера» - шар. - самая внешняя воздушная оболочка Земли, состоящая в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения), количество которых непостоянно; находится в непрерывном взаимодействии с другими оболочками и постоянно испытывающая влияние космоса и прежде всего солнца:
- Спасает планету от метеоритов, которые сгорают вследствие трения;
- сдерживает резкие суточные температурные колебания (рассеивает солнечную энергию, а ночью спасает особенно облачность от переохлаждения);
- защищает от УФ-излучения;
-содержит кислород.
Атмосфера начала образовываться вместе с формированием Земли. В процессе эволюции планеты и по мере приближения ее параметров к современным значениям произошли принципиально качественные изменения ее химического состава и физических свойств.
Согласно эволюционной модели, на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад сформировалась как твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени началась медленная эволюция атмосферы.
Некоторые геологические процессы, (например, излияния лавы при извержениях вулканов) сопровождались выбросом газов из недр Земли. В их состав входили азот, аммиак, метан, водяной пар, оксид СО и диоксид СО2 углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода, образуя углекислый газ.
Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным компонентом, хотя некоторая его часть связывалась в молекулы в результате химических реакций.
Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений.
Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).
В сухом воздухе у земной поверхности содержится
Азот -78,09%
Кислород – 20,95 %
Оргон – 0,93%
Углекислый газ – 0,03%.
Кроме указанных в таблице газов, в атмосфере содержатся SО2, СН4, NН3, СО, углеводороды, НСl, НF, пары Нg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль).
В атмосфере содержится водяной пар (до 4% по объему). Общий вес газов атмосферы составляет приблизительно 4,5·1015 т. Таким образом, «вес» атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м2 = 1,1 кг/см2. Давление, равное Р0 = 1033,23 г/см2 = 1013,250 мбар = 760 мм рт. ст. = 1 атм, принимается в качестве стандартного среднего значения атмосферного давления.
Физическое состояние атмосферы определяется погодой и климатом. Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.
Рисунок http://www.geonature.ru/geoslov/938.htm
Тропосфера - нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90% всей массы атмосферы и почти все водяные пары. При подъёме через каждые 100 м температура в тропосфере понижается в среднем на 0,65° и достигает 220 К (−53°C) в верхней части. Этот верхний слой тропосферы называют тропопаузой.
Стратосфера - слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8°С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (около 0°С), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.
Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15—20 до 55—60 км), который определяет верхний предел жизни в биосфере. Важный компонент стратосферы и мезосферы — О3, образующийся в результате фотохимических реакций наиболее интенсивно на высоте ~ 30 км. Общая масса О3 составила бы при нормальном давлении слой толщиной 1,7—4,0 мм, но и этого достаточно для поглощения губительного для жизни УФ-излучения Солнца. Разрушение О3 происходит при его взаимодействии со свободными радикалами, NO, галогенсодержащими соединениями (в т. ч. «фреонами»).
В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и др. свечений.
В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют — на высоте 100—400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О+2, О−2, N+2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы — ОН•, НО•2 и др. В стратосфере почти нет водяного пара.
Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до −88°С. Верхней границей мезосферы является мезопауза.
Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.
Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).
До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.
На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.
На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы — около 20%; масса мезосферы — не более 0,3%, термосферы — менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.
Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.
На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15—19 км.
Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.
В атмосфере происходят многообразные физические процессы, непрерывно изменяющие ее состояние. Физическое состояние атмосферы у земной поверхности и в нижних 30—40 км в данный момент времени называется погодой. Погода характеризуется метеорологическими величинами (температура, давление, влажность воздуха, ветер, облачность, атмосферные осадки) и атмосферными явлениями (гроза, туман, пыльная буря, метель и др.).
В любом месте земли погода в разные годы меняется по-разному. Однако при всех различиях отдельных дней, месяцев и лет каждую местность можно характеризовать вполне определенным климатом. Как уже было сказано, локальным климатом называют совокупность атмосферных условий за многолетний период, присущую данной местности в зависимости от ее географической обстановки. Под географической обстановкой подразумевается не только положение местности, т.е. широта, долгота и высота над уровнем моря, но и характер земной поверхности, орография, почвенный покров и др.
Существуют три основных цикла атмосферных процессов, участвующих в формировании погоды и определяющих климат. Это так называемые климатообразующие процессы - теплооборот, влагооборот и атмосферная циркуляция. Термин «теплооборот» описывает сложные процессы получения, передачи, переноса и потери тепла в системе «земля атмосфера».
На верхнюю границу атмосферы солнечная радиация приходит в виде прямой радиации. Около 30% падающей на Землю прямой солнечной радиации отражается назад в космическое пространство. Остальные 70% поступают в атмосферу. Проходя сквозь атмосферу, солнечная радиация частично рассеивается атмосферными газами и аэрозолями. Эта часть переходит в особую форму рассеянной радиации (Около 26% энергии общего потока солнечной радиации превращается в атмосфере в рассеянную радиацию). Частично прямая солнечная радиация поглощается атмосферными газами и примесями и переходит в теплоту, т.е. идет на нагревание атмосферы.
Нерассеянная и непоглощенная в атмосфере прямая солнечная радиация достигает земной поверхности. Небольшая ее доля отражается от нее, а большая часть радиации поглощается земной поверхностью, в результате чего земная поверхность нагревается. Часть рассеянной радиации также достигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство.
В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, отличается от той, которая пришла на границу атмосферы. Величина потока солнечной радиации уменьшается, и спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному.
Голубой цвет неба — это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей. Чем больше в воздухе примесей более крупных размеров, чем молекулы воздуха, тем больше доля длинноволновых лучей в спектре солнечной радиации и тем белесоватее становится окраска небесного свода. Когда диаметр частиц тумана, облаков и аэрозолей становится более 1—2 мкм, то лучи всех длин волн уже не рассеиваются, а одинаково диффузно отражаются; поэтому отдаленные предметы при тумане и пыльной мгле заволакиваются уже не голубой, а белой или серой завесой. Поэтому же облака, на которые падает солнечный (т.е. белый) свет, кажутся белыми.
Вследствие же рассеянного света вся атмосфера днем служитисточником освещения: днем светло также и там, куда солнечные лучи непосредственно не падают, и даже тогда, когда солнце скрыто облаками. После захода Солнца вечером темнота наступает не сразу. Небо, особенно в той части горизонта, где зашло Солнце, остается светлым и посылает к земной поверхности постепенно убывающую рассеянную радиацию. Аналогично утром еще до восхода Солнца небо светлеет больше всего в стороне восхода и посылает к земле рассеянный свет. Это явление неполной темноты носит название сумерек — вечерних и утренних. Причиной его является освещение Солнцем, находящимся под горизонтом, высоких слоев атмосферы и рассеяние ими солнечного света.
Так называемые астрономические сумерки продолжаются вечером до тех пор, пока Солнце не зайдет под горизонт на 18°; к этому моменту становится настолько темно, что различимы самые слабые звезды. Продолжительность астрономических сумерек изменяется в зависимости от широты и времени года. В средних широтах она от 1,5 до 2 ч, в тропиках меньше, на экваторе немногим дольше одного часа. Неравномерное распределение тепла в атмосфере приводит к неравномерному распределению атмосферного давления, от распределения давления зависит движение воздуха, т.е. воздушные течения.
Движение воздуха относительно земной поверхности называется ветром.причиной появления ветров является неравномерное распределение давления. На характер движения воздуха относительно земной поверхности большое влияние оказывает суточное вращение Земли. В нижних слоях атмосферы на движение воздуха влияет также трение. Масштабы горизонтальных атмосферных движений меняются в очень широких пределах: от мельчайших вихорьков, которые можно наблюдать, например, во время метели, и до волн, сравнимых с размерами материков и океанов.
Иногда движения в атмосфере создают условия для застаивания воздуха над большими районами Земли, до 2—3 млн км2. В результате воздух тропосферы расчленяется на отдельные воздушные массы, которые более или менее длительно сохраняют свою индивидуальность, перемещаясь из одних областей Земли в другие. В горизонтальном направлении воздушные массы измеряются тысячами километров. Свойства воздушных масс (температура, влажность, содержание пыли) несут в себе отпечаток своего очага формирования, т.е. той области Земли, где они сформировались как целое под воздействием однородной земной поверхности. В дальнейшем, перемещаясь в другие области, воздушные массы переносят в эти области и свои свойства, т.е. свой режим погоды. Преобладание в данном районе в тот или иной сезон воздушных масс определенного типа или типов создает характерный климатический режим этого района.
Выделяют четыре основных типа воздушных масс с различным зональным положением очагов: массы арктического (в Южном полушарии — антарктического), умеренного (полярного), тропического и экваториального воздуха. Для каждого из типов характерны свой интервал значений температур у земной поверхности и на высотах, свои значения влажности, прозрачности, дальности видимости и др.
Конечно, свойства воздушных масс и, прежде всего температура непрерывно меняются при их перемещении из одних районов в другие. Происходит трансформация воздушных масс. Воздушные массы, перемещающиеся с более холодной земной поверхности на более теплую (обычно из высоких широт в низкие), называют холодными массами. Холодная воздушная масса вызывает похолодание в тех районах, в которые она поступает. В пути она сама прогревается, притом преимущественно снизу, от земной поверхности. Поэтому в ней возникают вертикальные градиенты температуры и развивается конвекция с образованием кучевых и кучево-дождевых облаков и выпадением ливневых осадков. Воздушные массы, перемещающиеся на более холодную поверхность (в более высокие широты), называются теплыми массами. Они приносят потепление, но сами охлаждаются внизу, поэтому в их нижних слоях создаются малые вертикальные градиенты температуры. Конвекция в них не развивается, преобладают слоистые облака и туманы. Различают еще местные воздушные массы, длительно находящиеся в одном районе. Свойства местных масс определяются нагреванием или охлаждением снизу в зависимости от сезона. Смежные воздушные массы разделены между собой сравнительно узкими переходными зонами, сильно наклоненными к земной поверхности. Эти зоны носят название фронтов. Длина таких зон — тысячи километров, ширина — десятки километров. Фронты между воздушными массами основных географических типов называют главными фронтами в отличие от менее значительных вторичных фронтов между массами одного и того же географического типа.
С фронтами связаны особые явления погоды. Восходящие движения воздуха в зонах фронтов приводят к образованию обширных облачных систем, из которых выпадают осадки на больших площадях. Огромные атмосферные волны, возникающие в воздушных массах по обе стороны от фронта, приводят к образованию атмосферных возмущений вихревого характера — циклонов и антициклонов, определяющих режим ветра и другие особенности погоды.
Литература
1. Селиверстов Ю.П. Землеведение: учебное пособие для студентов вузов по спец. 012500 «География» /Ю.П. Селиверстов, А.А. Боков – М.: Изд. центр «Академия», 2004. – 304 с.
2. Мельчаков Л.Ф. Общее землеведение с основами краеведения: Учеб.пособие для студентов – заочников фак. педагогики методики нач. образования. – М.: Просвещение, 1982. – 188 с.
3. Неклюкова Н.П. Общее землеведение / Н.П. Неклюкова. - М., 1976. – 230 с.
4. Войткевич Г.В. Основы учения о биосфере: учебное пособие для студентов вузов / Г.В. Войткевич, В.А. Вронский. - 2-е изд., перераб. и доп. - Ростов -н/Д: Феникс, 1996. – 148 с.
5. Второв П.П. Биогеография / П.П. Второв, Н.Н. Дроздов. - М.,1978. – 420 с.
6. Погода и климат/пер. с анг. Быстрова В. - М., 1998. – 126 с.
7. Учение о биосфере: учеб.пособие для студентов вузов, обучающихся в магистратуре по направлению 510600 "Биология" / О. З. Ерёмченко. - 2-е изд., перераб. и доп. - М.: ИЦ " Академия", 2006. – 124 с.
8. Хромов С.П. Метеорология и климатология / С.П. Хромов, М.А. Петросянц. - М.,1994. - 520 с.
9. Шубаев Л.П. Общее землеведение / Л.П. Шубаев. - М., 1977. – 268 с.