Вопрос 29. Основные свойства природных вод: соленость, плотность и особенности перехода жидкой фазы воды в твердое состояние.
1. Соленость – это минерализация воды.
Она измеряется в тысячных долях, в промилле и обозначается %.
Средняя солёность Мирового океана 35%. В 1 т воды содержится 35 кг солей, а общее их количество очень велико.
2. Плотность воды определяется массой единичного объема в килограммах на метр кубический (кг/м3).
В водоеме плотность воды зависит от таких вещей как: минерализация, температура, количество растворенных солей в воде, от давления высших слоев воды.
3. Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Изменения агрегатного состояния - это термодинамические процессы, называемые фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое — плавление; из жидкого в газообразное — испарение и кипение; из твёрдого в газообразное — сублимация; из газообразного в жидкое или твёрдое — конденсация; из жидкого в твёрдое — кристаллизация.
Соленость вод Мирового океана
Главным признаком, отличающим воды Мирового океана от вод суши, является их высокая соленость. Количество граммов веществ, растворенных в 1 литре воды, называют соленостью.
Морская вода — это раствор 44 химических элементов, но первостепенную роль в ней играют соли. Поваренная соль придает воде соленый вкус, а магниевая — горький. Соленость выражается в промилле (‰). Это тысячная доля числа. В литре океанической воды растворено в среднем 35 граммов различных веществ, значит, соленость будет 35‰.
Количество солей, растворенных в Мировом океане, будет примерно 49,2 1015; тонн. Для того чтобы наглядно представить себе, насколько велика эта масса, можно привести следующее сравнение. Если всю морскую соль в сухом виде распределить по поверхности всей суши, то та окажется покрытой слоем толщиной в 150 м.
Соленость вод океана не везде одинакова. На величину солености влияют следующие процессы:
— испарение воды. При этом процессе соли с водой не испаряются;
— льдообразование;
— выпадение атмосферных осадков, понижающих соленость;
— сток речных вод. Соленость вод океана у материков значительно меньше, чем в центре океана, так как воды рек опресняют ее;
— таяние льдов.
Такие процессы, как испарение и льдообразование, способствуют повышению солености, а выпадение осадков, сток речных вод, таяние льдов понижают ее. Главную роль в изменении солености играют испарение и выпадение атмосферных осадков. Поэтому соленость поверхностных слоев океана, так же как и температура, зависит от климатических условий, связанных с широтой.
Соленость Красного моря — 42‰. Это объясняется тем, что в это море не впадает ни одной реки, атмосферных осадков здесь выпадает очень мало (тропики), испарение воды от сильного нагрева солнцем очень большое. Вода испаряется из моря, а соль остается. Соленость Балтийского моря не выше 11‰. Это объясняется тем, что это море находится в климатическом поясе, где меньше испарение, но выпадает больше осадков. Однако общая картина может нарушаться течениями. Это особенно хорошо заметно на примере Гольфстрима — одного из самых мощных течений в океане, ветви которого, проникая далеко в Северный Ледовитый океан (соленость 10-11‰), несут воды с соленостью до 35‰. Обратное явление наблюдается у берегов Северной Америки, где под воздействием холодного арктического течения, например Лабрадорского, понижается соленость воды у берегов.
Соленость глубинной части океана в целом практически постоянна. Здесь отдельные слои воды с различной соленостью могут чередоваться по глубине в зависимости от их плотности.
Воды, соленость которых не превышает 1‰, называются пресными.
Плотность
Плотность воды определяется массой единичного объема в килограммах на метр кубический (кг/м3). В водоеме П.в. зависит от таких вещей как: минерализация, температура, количество растворенных солей в воде, ну и, конечно же, от давления высших слоев воды.
Плотность воды химически чистой (обессоленной) зависит от температуры. Их зависимость вычисляется по формуле, которая напоминает параболу с определенной вершиной при t 3,98°С. При такой температуре плотность воды как химического вещества принято считать равной 1000 кг/м3, или же 1г/см3. Если происходит снижение t до 0°С, плотность воды снижается на 0.132 кг/м3, а если же происходит повышение t, то плотность понижается до 995.67 кг/м3 (это при 30°С). Условной П.в. называется разность между плотностью при некоторой температуре (t) и самой большой плотностью (sigma t) approx rho T – 1000. По-другому ее еще называют аномалией П.в. При повышении давления и минерализации П.в. тоже увеличивается. Незначительные изменения плотности воды от всех этих трех факторов играют важнейшую роль при динамике вод в водоемах, в формировании качества воды и их экосистем.
Всем известно, что при повышении температуры вещества увеличивают свой объем и понижают плотность. Вода обладает точно таким же свойством, но в интервале от 0 до 4°С, где с возрастанием температуры объем не повышается, а, наоборот, сокращается, данное свойство не выполняется. Принято считать максимальную плотность воды при температуре 4°С. Отсюда можно сделать вывод, что для воды зависимость объема и температуры двузначна. К примеру, при 0.2 и 8°С масса воды занимает одинаковое количество объема, точно так же как и при 3 и 5°С. Но, не смотря на это, воду принято считать эталоном плотности – при температуре равной 4°С, когда ее масса в 1 грамм имеет объем в 1 кубический сантиметр.
А как изменится объем воды при понижении температуры? Выяснилось, что при t ниже 0°С он будет продолжать увеличиваться, при условии переохлаждения. Но переохлаждение всегда требует сложных условий: неподвижность воды, отсутствия мест кристаллизации льда.
Если вода лишена растворенных в ней газов, то ее можно переохладить до минус 70°С и при этом она не превратится в лед. Но если ее встряхнуть или добавить небольшое количества льда, то она мгновенно покроется льдом и температура ее подскочит до 0°С (на 70°С). Можно так же довести воду до температуры 150°С без закипания, однако если в нее ввести пузырек воздуха, то вода моментально вскипит и температура ее понизится до 100°С.
Вода, при замерзании, внезапно увеличивается в объеме на 11%, так же внезапно и уменьшается при таянии. Это увеличение объема играет огромную роль, как в природе, так и в жизни людей. При замерзании воды и ее дальнейшем увеличении объема, происходит расширение, в результате чего возникает сильное давление, равное 2500 кгс/см2. Именно поэтому замерзающая вода обладает разрушительной силой в замкнутых пустотах, трещинах гор. Именно это объясняет то, как замерзающая вода разрушает многолетние глыба, превращая их в мелкие осколки или же, как происходят взрывы крупных наледей. Точно так же, при замерзании воды в трубопроводе, происходят расширения труб, а в дальнейшем и их взрывы. Стоит так же сказать, что все эти процессы происходят при абсолютном давлении равном 1 атм.
Важно так же то , что максимальная плотность воды отмечается при 4°С, лед оказывается легче жидкости и находится на поверхности. Если бы лед находился внизу водоемов, то они промерзали бы с самого дна, создавая глобальную катастрофу для всех тех, кто обитает в этих водоемах.
Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляютплазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе — Эйнштейна.
Изменения агрегатного состояния это термодинамические процессы, называемые фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое — плавление; из жидкого в газообразное — испарение и кипение; из твёрдого в газообразное —сублимация; из газообразного в жидкое или твёрдое — конденсация; из жидкого в твёрдое — кристаллизация. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию.
не все
Вопрос 30. Приливные явления в гидросфере, причины их возникновения. Особенности и распространение экваториальных и тропических приливов.
Приливные явления–это динамические и физико-химические процессы в водах морей и океанов, вызванные приливообразующими силами, обусловленными взаимодействием Земли, Солнца и Луны.
В самом общем случае приливные силы представляют собой силы, вызывающие эффекты, проявляющиеся при воздействии неоднородного силового поля на протяжённый объект, независимо от того, какое движение он совершает и чем это поле вызвано. Силовое поле может иметь либо гравитационную, либо электромагнитную природу (в том случае, если тело обладает электрическим зарядом, неподвижным или движущимся относительно источников поля).
Экваториальные приливы – это приливы, наблюдающиеся при прохождении Луны через экватор. Это колебания уровня моря, наблюдаемые в дни, когда склонение Луны близко к 0° (Луна находится вблизи экватора).
Тропические приливы – это колебания уровня моря, наблюдаемые в дни, когда у Луны наибольшее северное или южное склонение (находится вблизи тропиков).
Прили́вные си́лы — силы, возникающие в телах, свободно движущихся в неоднородном силовом поле. Самым известным примером действия приливных сил являются приливы и отливы на Земле, откуда и произошло их название.
В самом общем случае приливные силы представляют собой силы, вызывающие эффекты, проявляющиеся при воздействии неоднородного силового поля на протяжённый объект, независимо от того, какое движение он совершает и чем это поле вызвано. Силовое поле может иметь либо гравитационную, либо электромагнитную природу (в том случае, если тело обладает электрическим зарядом, неподвижным или движущимся относительно источников поля).
Так, в гравитационном поле нарастающей интенсивности (то есть с постоянным градиентом модуля силы тяжести) спиральная пружина будет свободно падать по прямой с нарастающим ускорением, растянувшись в направлении падения на постоянную величину настолько, чтобы её силы упругости уравновесили бы градиент интенсивности гравитационного поля.
Изменение формы небесного тела под воздействием гравитации других (внешних) тел.
Изменение орбиты двух тел, обращающихся друг относительно друга по законам Кеплера, в результате гравитационного воздействия (возмущения) от третьего тела.
Например: водная оболочка Земли под действием возмущений Луны (и Солнца) деформируется, образуя приливные горбы вдоль направления Земля-Луна, а Солнце вытягивает орбиту Луны вдоль направления Солнце - Земля. Следствиями П.Я. являются торможения вращения тел, обращающихся вокруг более массивных (Луна и некоторые другие спутники, Меркурий и т.д.), а также вековые изменения больших полуосей орбит.
Вопрос 31. Внутреннее строение Земли. Отличие земной коры океанического и континентального типа.
Ядро - это центральная, сердцевинная часть земного шара.
Мантия - внутренняя оболочка, покрывающая ядро. Мантия - крупнейшая из внутренних оболочек планеты (83% объема Земли.
Земная кора - верхний твердый слой нашей планеты. По сравнению с ядром и мантией, она очень тонкая.
Земная кора океанического типа - состоит главным образом из базальтов. Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров
Земная кора континентального типа - имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из матаморфических пород — гранулитов и им подобных.
Внутреннее строение Земли
Ядро - это центральная, сердцевинная часть земного шара. Оно пока является загадкой для науки. Уверенно можно говорить лишь о его радиус - около 3500 км. Ученые считают, что внешняя часть ядра находится в расплавленной-жидком состоянии, а внутренняя - в твердом. Предполагают также, что ядро состоит из вещества, похожего на металлы (из железа с примесью кремния или из железа и никеля, есть и другие предположения). Температура в ядре достигает 5 0000 С.
Мантия - внутренняя оболочка, покрывающая ядро (с греческого "мантия" - "покрывало"). Ее мощность почти 3 000 км. Мантия - Крупнейшая из внутренних оболочек планеты (83% объема Земли). Мантию, как и ядро, никто никогда не видел. Предполагают, что, чем ближе к центру Земли, тем давление в ней больше, а температура выше: от нескольких сотен градусов к 2 500 0С. При такой температуре вещество мантии должна быть расплавленной, но плавлению мешает большое давление. Поэтому считают, что она твердая, но одновременно и накалена.
Ученые предполагают, что верхняя часть мантии составлена плотными породами, т.е. она твердая. Однако в ней на глубине 50-250 км от поверхности Земли размещается частично расплавленный слой - астеносфера. Он сравнительно мягкий и пластичный, как пластилин или воск. Это вещество мантии способна медленно течь и таким способом перемещаться. Скорость перемещения очень невелика - несколько сантиметров в год. Однако это играет решающую роль в движениях земной коры, о которых пойдет речь.
Земная кора - верхний твердый слой нашей планеты. По сравнению с ядром и мантией, она очень тонкая. Толща (мощность) земной коры наибольшее под горами - 70 км, под равнинами она составляет 35-40 км, а под океанами - лишь 5-10 км. Земную кору часто сравнивают с кожурой яблока в противовес всей его мякоти. Однако, это и земная твердь, что является для людей основой мира. Именно на этой тонкой земной коре построен города, по ней ходят люди, текут реки, в понижениях лежат моря и океаны, из нее добывают полезные ископаемые.
Заглянуть в глубь земной коры помогают шахты и скважины, которые создаются для добычи полезных ископаемых. Люди давно заметили, что в шахтах с увеличением глубины температура повышается. Например, на глубине 1000 м шахтеры работают в условиях жары (около 30 0С). Тепло земной коре передается от мантии. С научной целью геологи бурят сверхглубокие скважины. Глубокая из них (До 15 км) пробурена в России на Кольском полуострове. Из таких узких отверстий получают образцы вещества и тщательно исследуют.
Лучше строение земной коры известна в поверхностной части на суше. Он виден в обнажениях на склонах гор, крутых берегах рек, карьерах. На поверхностный слой земной коры влияет солнечный луч. Летом он прогревается, осенью охлаждается, зимой промерзает, а весной тает и постепенно снова нагревается. Однако, уже на глубине 20-30 м, независимо от времен года, температура круглогодично содержится одинаковое. А дальше с глубиной она начинает повышаться.
Земная кора вместе с верхней мантией образуют оболочку - литосферу. Она является единственным твердым ("каменным") слоем, который будто плавает в пластической астеносфере. Толщина литосферы разная: под океанами - около 50 км, на материках - до 200 км.
Рисунок в тетради.
Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.
Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.
В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 130-140 километров.
Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитови гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.
Состав верхней континентальной коры
Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 25% — на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba — составляют 99,8 % массы земной коры.
Вопрос 32. Основные черты устройства земной поверхности и гипотезы, объясняющие происхождение планетарных и мегаформ рельефа Земного шара.
Земная поверхность – это поверхность Земли, понимаемая в следующих различных смыслах:
- поверхность литосферы;
- в узком смысле - поверхность суши;
- поверхность планеты Земля в целом - поверхность суши вместе с растительным, снежным покровом и др., а также поверхность Мирового океана вместе со льдами.
Планетарные формы рельефа Земли:
основными формами планетарного рельефа являются материки и впадины океанов. Их образование связано с внутренними силами Земли, сформировавшими материковый и океанический тип земной коры.
Мегаформы рельефа Земного шара:
занимают площади порядка сотен или десятков тысяч км2. Это крупные впадины, горные системы. (Примеры: впадина Мексиканского залива, впадина Карибского моря, горная система Альп, горная система Кавказа, плато Декан).
Вопрос 33. Биосфера как совокупность четырех царств природы. Химический состав живого вещества. Экологические группы организмов – организмы продуценты, редуценты и консументы, их подразделение на автотрофы и гетеротрофы.
Биосфера – это сфера жизни, целостная планетная оболочка.
В состав биосферы входят семь различных, но взаимодействующих частей:
1) живое вещество – совокупность бесчисленного множества живых организмов – бактерий, растений и животных;
2) биогенное вещество, созданное и переработанное жизнью, - угли, известняки, битумы и др.;
3) косное вещество, в образовании которого жизнь не участвует, - горные породы эндогенного происхождения, некоторые газы и пр.;
4) биокосное вещество, которое создаётся одновременно и процессами косной материи и живыми организмами, - вся природная вода, воздух тропосферы, породы коры выветривания;
5) радиоактивные элементы, поступающие из недр планеты;
6) Вещество космического происхождения;
7) Рассеянные атомы.
Живое вещество – это живые организмы, населяющие нашу планету.
Живые организмы состоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Основными элементами живых существ являются С, О, N и Н.
Продуценты – это организмы, способные синтезировать органические вещества из неорганических. Это, в основном, зелёные растения (синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий - хемотрофов способны на чисто химический синтез органики без солнечного света.
Редуценты – это микроорганизмы (бактерии и грибы), разрушающие отмершие остатки живых существ, превращающие их в неорганические и простейшие органические соединения.
Консументы – это гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не способны разлагать органические вещества до неорганических.
Автотрофы – это организмы, синтезирующие органические соединения из неорганических.
Гетеротрофы – это организмы, которые не способны синтезировать органические вещества из неорганических, путём фотосинтеза или хемосинтеза.
Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».
Местоположение биосферы
Биосфера включает в себя верхние слои литосферы, в которых ещё живут организмы, гидросферу и нижние слои атмосферы.
Границы биосферы
Верхняя граница в атмосфере: 15—20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.
Нижняя граница в литосфере: 3,5—7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.
Граница между атмосферой и литосферой в гидросфере: 10—11 км. Определяется дном Мирового Океана, включая донные отложения.
Структура Биосферы:
1. Живое вещество — вся совокупность тел живых организмов, населяющих Землю, физико-химически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4…3,6•1012 т (в сухом весе) и составляет менее одной миллионной части всей биосферы (ок. 3•1018 т), которая, в свою очередь, представляет собой менее одной тысячной массы Земли. Но это одна «из самых могущественных геохимических сил нашей планеты», поскольку живые организмы не просто населяют земную кору, а преобразуют облик Земли. Живые организмы населяют земную поверхность очень неравномерно. Их распространение зависит от географической широты.
2. Биогенное вещество — вещество, создаваемое и перерабатываемое живым организмом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь большую часть атмосферы, весь объём мирового океана, огромную массу минеральных веществ. Эту геологическую роль живого вещества можно представить себе по месторождениямугля, нефти, карбонатных пород и т. д.
3. Косное вещество — продукты, образующиеся без участия живых организмов.
4. Биокосное вещество - вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.
5. Вещество, находящееся в радиоактивном распаде.
6. Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.
7. Вещество космического происхождения.
Живое вещество — вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности.
Это понятие не следует путать с понятием «биомасса», которое является частью биогенного вещества.
Термин введён В. И. Вернадским.
Живые организмы состоят из элементов, образующих газообразные (воздушные мигранты) и растворимые (водные мигранты) соединения. Между составом земной коры и живым веществом нет прямой зависимости. Более 98% живого составляют воздушные мигранты - кислород, углерод, водород, азот, с содержанием кислорода до 70%. Большая часть кислорода (свыше50%) связана с водородом и образует воду. Вода составляет в травах более 85%, крупных млекопитающих- свыше 60%, только споры и семена ее содержат не более 15%. Меньшая часть кислорода и водорода входит в состав белков, жиров, углеводов и других органических соединений.
Из водных мигрантов преобладают наиболее подвижные элементы в следующих соотношениях: кальция больше, чем алюминия и железа, калия больше, чем кремния (в земной коре наоборот). В живом веществе, в целом, мало ядовитых элементов - урана, ртути, селена, хотя они и образуют растворимые соединения. Низки так же содержания циркония, титана, тантала и других малоподвижных элементов.
Кларки концентрации элементов в живом веществе именуются биофильностью элементов. Наибольшей биофильностью обладает С - 7,8 * 104, менее биофильны азот - 160, Н- 70.
Близки по биофильности анионогенные элементы 0 - 1,5, Cl - 1,1. S- 1, P - 0,75, B - 0,83, Br -0,71. Наименее биофильны Fe - 0,002, Al - 0,0006. Такое соотношение биофильности основных элементов говорит о том, что состав живого вещества ближе коррелируется с составом атмосферы и гидросферы, чем литосферы.
Отмечено, что своеобразие климата и геологического строения определяют своеобразие химического состава живого вещества конкретных ландшафтов, их отличие от среднего состава живого вещества Земли. Например, живое вещество солончаков обогащено натрием, хлором, серой, в растениях степей - много кальция и мало алюминия, железа, растения влажных тропиков бедны кальцием и богаты алюминием. Средний химический состав живого вещества ландшафта является важным систематическим признаком ландшафтов.
Характерным химическим составом обладают как отдельные виды животных и растений, так и отдельные организмы Элементарный химический состав является важным систематическим признаком. Так, углерод составляет в ряске малой - 2,5% , в кладонии - 21,8%, в белой мыши - 12,5%, в бабочке-капустнице- 20,5%. Клевер содержит 0,01% натрия, солянки - 1,5-2,0% (данные в % от живой массы). Зола злаков богата окисью кремния, зола бобовых - кальцием, зола картофеля и подсолнечника - калием.
Следовательно, живое вещество, в особенности растительный покров является биогеохимическим барьером, на котором концентрируются воздушные мигранты - углерод, кислород, водород, азот, йод, а если считать накопление на золу, то на биогеохимическом барьере накапливается фосфор, сера, хлор, хром, барий, а в отдельных ландшафтах кальций, магний, натрии, цинк, медь, молибден и другие элементы.
Оставаясь важным диагностическим признаком вида, химический состав различных органов растений может быть неодинаков. Например, отмечено повышенное содержание металлов в листьях и тонких ветвях деревьев, меньше их в корнях и коре, минимальное содержание фиксируется в древесине. Химический состав организмов меняется в зависимости от сезона. Так, содержание кобальта, никеля, меди в листьях деревьев от весны к осени увеличивается в 2-3 раза. Содержание калия и фосфора в золе трав уменьшается от весны к осени. В целом сезонная изменчивость наиболее проявляется в молодых органах и меньше - в старых. Эти закономернсти в содержании элементов в растениях следует учитывать, сопоставляя данные биохимического опробования.
Однако накопление химических элементов в организмах не бесконечно, для него существует физиологический барьер поглощения. Он различен для разных растений и для разных химических элементов. Если для радия он достаточно высок, и содержание этого элемента в растениях растет с увеличением его концентрации в почве, то для урана предел низок, организмы быстро насыщаются и перестают поглощать его из почвы.
Растения, прекращающие поглощать избыточный элемент из почвы при росте его содержания в почве, называются барьерными. Их продуктивность, достигнув максимума при наиболее благоприятном количестве элемента, при его избытке не меняется. Безбарьерные растения реагируют на избыточное количество элемента в почве сначала ростом продуктивности, а затем ее сокращением и гибелью.
Нередко высокое содержание элемента в среде приводит к различным изменениям в физиологии и морфологии организмов и со временем закрепляются наследственностью, так появляется расы, вариететы и новые виды организмов: цинковая, литиевая, серпентинитовая, селеновая и прочие флоры, распространенные в зонах развития соответствующих пород (естественный отбор на химической основе).
Таким образом, химический состав некоторых организмов позволяет делать заключение о районе происхождения вида и путях его миграции. Например, виды растений, обогащенные хлористым натрием возникли в бессточных областях, на морских побережьях, с высоким содержанием алюминия - на латеритной коре выветривания.
Экологические группы организмов
Продуце́нты — организмы, способные синтезировать органические вещества из неорганических, то есть, все автотрофы. Это, в основном, зелёные растения(синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики без солнечного света.
Продуценты являются первым звеном пищевой цепи.
Редуце́нты (также деструкторы, сапротрофы, сапрофиты, сапрофаги) — микроорганизмы (бактерии и грибы), разрушающие отмершие остатки живых существ, превращающие их в неорганические и простейшие органические соединения.
От животных-детритофагов редуценты отличаются прежде всего тем, что не оставляют твердых непереваренных остатков (экскрементов). Животных-детритофагов в экологии традиционно относят к консументам. В то же время все организмы выделяют углекислый газ и воду, а часто и другие неорганические (аммиак) или простые органические (мочевина) молекулы и таким образом принимают участие в разрушении (деструкции) органического вещества.
Редуценты возвращают минеральные соли в почву и воду, делая их доступными для продуцентов-автотрофов, и таким образом замыкают биотический круговорот. Поэтому экосистемы не могут обходиться без редуцентов (в отличие от консументов, которые, вероятно, отсутствовали в экосистемах в течение первых 2 млрд лет эволюции, когда экосистемы состояли из одних прокариот).
Исследованиями Н. И. Базилевич и др. (1993) установлено, что в наземных экосистемах различают две группы факторов, регулирующих деструкционные процессы, играющие весьма существенную роль в биологическом круговороте.
Это прежде всего абиотические факторы — выщелачивание растворимых соединений, фотохимическое окисление органического вещества и реакции его механического разрушения вследствие замерзания—оттаивания.
Эти факторы наиболее проявляются в надземных ярусах экосистем, а биотические факторы — в почвенном. Абиотические факторы деструкции характерны для аридных и семиаридных ландшафтов (пустыни, степи, саванны), а также для континентальных высокогорий и полярных ландшафтов.
Биотические факторы деструкции — это в первую очередь сапротрофные организмы (беспозвоночные и позвоночные животные, микроорганизмы), населяющие почву и подстилку, причём ведущим фактором в наземных ландшафтах служит главным образом почвенная микрофлора.
Консументы (от лат. consumе — употреблять) — гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не способны разлагать органические вещества до неорганических.
К консументам относят животных, некоторые микроорганизмы, а также паразитические и насекомоядные растения. Классифицируют консументов первого, второго и других порядков, так как на каждом этапе передачи вещества и энергии в трофической цепи теряется до 90 %, экологические пирамиды редко состоят из более чем четырёх порядков консументов.
Консументы первого порядка — растительноядные гетеротрофы (травоядные животные, паразитические растения), питаются непосредственно продуцентами биомассы.
Консументы второго порядка — хищные гетеротрофы (хищники, паразиты хищников), питаются консументами первого порядка.
Отдельно взятый организм может являться в разных трофических цепях консументом разных порядков, например, сова, поедающая мышь, является одновременно консументом второго и третьего порядка, а мышь — первого и второго, так как мышь питается и растениями, и растительноядными насекомыми.
Любой консумент является гетеротрофом, так как не способен синтезировать органические вещества из неорганических. Термин «консумент (первого, второго и так далее) порядка» позволяет более точно указать место организма в цепи питания. Редуценты (например, грибы, бактериигниения) также являются гетеротрофами, от консументов их отличает способность полностью разлагать органические вещества (белки,углеводы, липиды и другие) до неорганических (углекислый газ, аммиак, мочевина, сероводород), завершая круговорот веществ в природе, создавая субстрат для деятельности продуцентов (автотрофов).
Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические соединения из неорганических.
Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентамиорганического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом.
Автотрофные организмы для построения своего тела используют неорганические вещества почвы, воды, воздуха. При этом почти всегда источником углерода является углекислый газ. При этом одни из них (фототрофы) получают необходимую энергию от Солнца, другие (хемотрофы) — от химических реакций неорганических соединений.
Фототрофы - организмы, для которых источником энергии служит солнечный свет (фотоны, благодаря которым появляются доноры — источники электронов), называются фототрофами. Такой тип питания носит название фотосинтеза. К фотосинтезу способны зелёные растения и многоклеточные водоросли, а также цианобактерии и многие другие группы бактерий благодаря содержащемуся в их клетках пигменту — хлорофиллу. Археи из группы галобактерий способны к бесхлорофилльному фотосинтезу, при котором энергию света улавливает и преобразует белокбактериородопсин.
Хемотрофы - остальные организмы в качестве внешнего источника энергии (доноров — источников электронов) используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород,метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии также могут использовать гетеротрофный тип питания, то есть являются миксотрофами.
Гетеротро́фы (др.-греч. ἕτερος — «иной», «различный» и τροφή — «пища») — организмы, которые не способны синтезировать органические вещества из неорганических, путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, то есть произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков иредуц<