Механизмы возникновения полиплоидии.
Использование геномных мутаций в селекции
Исходно автополиплоидия является следствием нерасхождения хромосом при делении клетки: при митозе (тогда возникают митотические полиплоиды) или при мейозе (тогда возникают мейотические полиплоиды). [Нарушения нормального расхождения хромосом иначе называют нарушением сегрегации хромосом.]
Митотические полиплоиды обычно возникают вследствие нерасхождения хромосом в анафазе: вместо двух ядер образуется одно, в котором число хромосом становится в два раза большим, чем в исходном ядре. Таким образом, из диплоидной клетки (2n, или 2х) образуется тетраплоидная (4n, или 4х). У низших эукариот при дальнейших делениях клеток число хромосом может возрастать, и одно ядро может содержать множество хромосомных наборов (8х...16х...32х; и даже до 4000...6000х, например, в макронуклеусе у инфузорий).
Причины нерасхождения хромосом многообразны. Например, существует спонтанная полиплоидизация, которая происходит без видимых причин. В экспериментальных условиях нерасхождение хромосом можно вызвать путем воздействия на клетки митозными ядами. К митозным ядам относятся: колхицин, винбластин, аценафтен и др. Митозные яды разрушают микротрубочки веретена деления, что делает невозможным нормальное расхождение хромосом (такой митоз называется К–митозом). Полиплоидные клетки можно получать, используя рентгеновское облучение, повышенные или пониженные температуры, некоторые химические вещества (эфир, хлороформ). При воздействии перечисленных фактор может изменяться не только число геномов, но и число отдельных хромосом (т.е. возникает анеуплоидия), а также и структура хромосом (т.е. возникают хромосомные перестройки).
Полиплоидные клетки меристем в дальнейшем могут давать начало спорогенным клеткам, и тогда образуются полиплоидные гаметы, например: 4х (спорогенные диплоидные клетки)→ мейоз → 2х (гаплоидные споры с двойным набором хромосом, дающие начало гаплоидным яйцеклеткам или спермиям).
Мейотические полиплоиды возникают вследствие нерасхождения хромосом при мейозе. Рассмотрим типичные нарушения сегрегации хромосом.
1. Нерасхождение по всем хромосомам.
а). Сегрегация вообще отсутствует (например, при полном разрушении веретена деления). Тогда из исходной диплоидной клетки образуется одна тетраплоидная клетка, в которой остается весь исходный хроматин.
б). Первое деление мейоза протекает как митоз: в результате из исходной диплоидной клетки образуется диада – две диплоидные клетки с однохроматидными хромосомами. Образовавшиеся клетки идентичны по отношению друг к другу и по отношению к материнской клетке. При этом в каждой из диплоидных клеток содержится два разных хромосомных набора (два разных генома, например, Х1 Х2). Эти клетки утрачивают способность к делению и дают начало спорам или гаметам. Подобные нарушения встречаются у гибридов, если невозможно образование бивалентов.
в). Первое деление происходит нормально (с образованием гаплоидных клеток с двухроматидными хромосомами), но второе деление блокируется на стадии метафазы II. В результате происходит диплоидизация гаплоидных клеток: каждая двухроматидная хромосома расщепляется на две хроматиды, эти хроматиды не расходятся, и диплоидное число хромосом восстанавливается. Конечным результатом такого мейоза также является образование диады – двух диплоидных клеток, которые дают начало спорам или гаметам. При этом в каждой из диплоидных клеток содержится два одинаковых хромосомных набора (два разных генома, например, в одной клетке Х1Х1, а в другой – Х2Х2). Подобные нарушения встречаются значительно реже, чем предыдущее.
2. Нерасхождение по отдельным хромосомам. Эти нарушения аналогичны предыдущим, но нарушение сегрегации затрагивает лишь отдельные хромосомы. В результате в одних дочерних клетках появляются избыточные хромосомы, а в других клетках эти хромосомы утрачиваются.
Нерасхождение хромосом (как и при митозе) может быть спонтанным, но может быть обусловлено и действием определенных внешних факторов, как при митозе.
В дальнейшем полиплоиды могут использоваться для получения новых полиплоидов путем гибридизации. Например, триплоидные семена получают, скрещивая автотетраплоидные и диплоидные сорта. В этом случае гаметы с удвоенным основным хромосомным числом (2х) сливаются с нормальными гаметами (х). Этот процесс может протекать и в природных условиях, т.е. спонтанно.
Тема 4. Молекулярные основы наследственности и изменчивости
1. Нуклеиновые кислоты, их строение, функции и генезис
2. Основные этапы биосинтеза белков. Генетический код, его основные свойства
3. Регуляция экспрессии генов
Лекция 1. Нуклеиновые кислоты, их строение и функции
Нуклеиновые кислоты – это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды, связанные фосфодиэфирными связями.
Нуклеотиды – это органические вещества, молекулы которых состоят из остатка пентозы (рибозы или дезоксирибозы), к которому ковалентно присоединены остаток фосфорной кислоты и азотистое основание. Азотистые основания в составе нуклеотидов делятся на две группы: пуриновые (аденин и гуанин) и пиримидиновые (цитозин, тимин и урацил). Дезоксирибонуклеотиды включают в свой состав дезоксирибозу и одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т), цитозин (Ц). Рибонуклеотиды включают в свой состав рибозу и одно из азотистых оснований: аденин (А), гуанин (Г), урацил (У), цитозин (Ц).
В ряде случаев в клетках встречаются и разнообразные производные от перечисленных азотистых оснований – минорные основания, входящие в состав минорных нуклеотидов.
Свободные нуклеотиды и сходные с ними вещества играют важную роль в обмене веществ. Например, НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат) служат переносчиками электронов и протонов.
Свободные нуклеотиды способны присоединять еще 1...2 фосфорные группы, образуя макроэргические соединения. Универсальным источником энергии в клетке является АТФ – аденозинтрифосфорная кислота, состоящая из аденина, рибозы и трех остатков фосфорной (пирофосфорной) кислоты. При гидролизе одной концевой пирофосфатной связи выделяется около 30,6 кДж/моль (или 8,4 ккал/моль) свободной энергии, которая может использоваться клеткой. Такая пирофосфатная связь называется макроэргической (высокоэнергетической).
Кроме АТФ существуют и другие макроэргические соединения на основе нуклеотидов: ГТФ (содержит гуанин; участвует в биосинтезе белков, глюкозы), УТФ (содержит урацил; участвует в синтезе полисахаридов).
Нуклеотиды способны образовывать циклические формы, например, цАМФ, цЦМФ, цГМФ. Циклические нуклеотиды выполняют роль регуляторов различных физиологических процессов.
Нуклеиновые кислоты
Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. В частности, последовательность нуклеотидов отражает первичную структуру белков (см. ниже). Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.
Нуклеиновые кислоты – это химически активные вещества. Они образуют разнообразные соединения с белками – нуклеопротеиды, или нуклеопротеины.
Дезоксирибонуклеиновая кислота (ДНК) – это нуклеиновая кислота, мономерами которой являются дезоксирибонуклеотиды. ДНК является первичным носителем наследственной информации. Это означает, что вся информация о структуре, функционировании и развитии отдельных клеток и целостного организма записана в виде нуклеотидных последовательностей ДНК.
Нуклеиновые кислоты были открыты Мишером в 1868 г. Однако лишь в 1924 г. Фёльген доказал, что ДНК является обязательным компонентом хромосом. В 1944 г. Эвери, Мак-Леод и Мак-Карти установили, что ДНК играет решающую роль в хранении, передаче и реализации наследственной информации.
Существует несколько типов ДНК: А, В, Z, Т–формы. Из них в клетках обычно встречается В–форма – двойная правозакрученная спираль, которая состоит из двух нитей (или цепей), связанных между собой водородными связями. Каждая нить представлена чередующимися остатками дезоксирибозы и фосфорной кислоты, причем, к дезоксирибозе ковалентно присоединяется азотистое основание. При этом азотистые основания двух нитей ДНК направлены друг к другу и за счет образования водородных связей образуют комплементарные пары: А=Т (две водородных связи) и Г≡Ц (три водородных связи). Поэтому нуклеотидные последовательности этих цепей однозначно соответствуют друг другу. Длина витка двойной спирали равна 3,4 нм, расстояние между смежными парами азотистых оснований 0,34 нм, диаметр двойной спирали 1,8 нм.
Длина ДНК измеряется числом нуклеотидных пар (сокращ. – пн). Длина одной молекулы ДНК колеблется от нескольких тысяч пн (сокращ. – тпн) до нескольких миллионов пн (мпн). Например, у наиболее простых вирусов длина ДНК составляет примерно 5 тпн, у наиболее сложных вирусов – свыше 100 тпн, у кишечной палочки ~ 3,8 мпн, у дрожжей ~ 13,5 мпн, у мушки дрозофилы ~ 105 мпн, у человека ~ 2900 мпн (размеры ДНК даны для минимального набора хромосом – гаплоидного). Длину ДНК можно выразить и в обычных метрических единицах длины: общая длина молекулы ДНК у кишечной палочки составляет ~ 1,3 мм, а длина молекулы ДНК в составе первой хромосомы человека ~ 16 см, а длина ДНК во всем геноме человека (в 23 хромосомах) ~ 1 метр. В эукариотических клетках ДНК существует в виде нуклеопротеиновых комплексов, в состав которых входят белки-гистоны.
Репликация (самоудвоение) ДНК – это один из важнейших биологических процессов, обеспечивающих воспроизведение генетической информации. В результате репликации одной молекулы ДНК образуется две новые молекулы, которые являются точной копией исходной молекулы – матрицы. Каждая новая молекула состоит из двух цепей – одной из родительских и одной из сестринских. Такой механизм репликации ДНК называется полуконсервативным.
Реакции, в которых одна молекула гетерополимера служит матрицей (формой) для синтеза другой молекулы гетерополимера с комплементарной структурой, называются реакциями матричного типа. Если в ходе реакции образуются молекулы того же вещества, которое служит матрицей, то реакция называется автокаталитической. Если же в ходе реакции на матрице одного вещества образуются молекулы другого вещества, то такая реакция называется гетерокаталитической. Таким образом, репликация ДНК (то есть синтез ДНК на матрице ДНК) является автокаталитической реакцией матричного синтеза.
К реакциям матричного типа относятся, в первую очередь, репликация ДНК (синтез ДНК на матрице ДНК), транскрипция ДНК (синтез РНК на матрице ДНК) и трансляция РНК (синтез белков на матрице РНК). Однако существуют и другие реакции матричного типа, например, синтез РНК на матрице РНК и синтез ДНК на матрице РНК. Два последних типа реакций наблюдаются при заражении клетки определенными вирусами. Синтез ДНК на матрице РНК (обратная транскрипция) широко используется в генной инженерии.
Все матричные процессы состоят из трех этапов: инициации (начала), элонгации (продолжения) и терминации (окончания).
Репликация ДНК – это сложный процесс, в котором принимает участие несколько десятков ферментов. К важнейшим из них относятся ДНК-полимеразы (несколько типов), праймазы, топоизомеразы, лигазы и другие. Главная проблема при репликации ДНК заключается в том, что в разных цепях одной молекулы остатки фосфорной кислоты направлены в разные стороны, но наращивание цепей может происходить только с того конца, который заканчивается группой ОН. Поэтому в реплицируемом участке, который называется вилкой репликации, процесс репликации протекает на разных цепях по-разному. На одной из цепей, которая называется ведущей, происходит непрерывный синтез ДНК на матрице ДНК. На другой цепи, которая называется запаздывающей, вначале происходит связывание праймера – специфического фрагмента РНК. Праймер служит затравкой для синтеза фрагмента ДНК, который называется фрагментом Оказаки. В дальнейшем праймер удаляется, а фрагменты Оказаки сшиваются между собой в единую нить фермента ДНК–лигазы. Репликация ДНК сопровождается репарацией – исправлением ошибок, неизбежно возникающих при репликации. Существует множество механизмов репарации.
Рибонуклеиновая кислота (РНК) – это нуклеиновая кислота, мономерами которой являются рибонуклеотиды.
В пределах одной молекулы РНК имеется несколько участков, которые комплементарны друг другу. Между такими комплементарными участками образуются водородные связи. В результате в одной молекуле РНК чередуются двуспиральные и односпиральные структуры, и общая конформация молекулы напоминает клеверный лист на черешке.
Азотистые основания, входящие в состав РНК, способны образовывать водородные связи с комплементарными основаниями и ДНК, и РНК. При этом азотистые основания образуют пары А=У, А=Т и Г≡Ц. Благодаря этому возможна передача информации от ДНК к РНК, от РНК к ДНК и от РНК к белкам.
В клетках обнаруживается три основных типа РНК, выполняющих различные функции:
1. Информационная, или матричная РНК (иРНК, или мРНК). Составляет 5% клеточной РНК. Служит для передачи генетической информации от ДНК на рибосомы при биосинтезе белка. В эукариотических клетках иРНК (мРНК) стабилизирована с помощью специфических белков. Это делает возможным продолжение биосинтеза белка даже в том случае, если ядро неактивно.
2. Рибосомная, или рибосомальная РНК (рРНК). Составляет 85% клеточной РНК. Входит в состав рибосом, определяет форму большой и малой рибосомных субъединиц, обеспечивает контакт рибосомы с другими типами РНК.
3. Транспортная РНК (тРНК). Составляет 10% клеточной РНК. Транспортирует аминокислоты к соответствующему участку иРНК в рибосомах. Каждый тип тРНК транспортирует определенную аминокислоту.
В клетках имеются и другие типы РНК, выполняющие вспомогательные функции.
Все типы РНК образуется в результате реакций матричного синтеза. В большинстве случаев матрицей служит одна из цепей ДНК. Таким образом, синтез РНК на матрице ДНК является гетерокаталитической реакцией матричного типа. Этот процесс называется транскрипцией и контролируется определенными ферментами – РНК–полимеразами (транскриптазами).