Клинические особенности. Фактически чрескожные датчики измеряют пар­циальное кожное давление

Фактически чрескожные датчики измеряют пар­циальное кожное давление, которое с определенным приближением соответствует парциальному дав­лению в артерии,— если сердечный выброс и перфу-зия адекватны. PtcO2 (PsO2) составляет приблизи­тельно 75 % от PaO2, a PtcCO2 (PsCO2) - 130 % от PaCO2 (индекс tc — от англ, transcutaneous — чрескожный, индекс s — от англ, skin — кожа).

Клинические особенности. Фактически чрескожные датчики измеряют пар­циальное кожное давление - student2.ru

Рис.6-29. А. В норме на капнограмме регистрируются 3 фазы выдоха, каждая из них характеризуется определенным газо­вым составом выдыхаемой смеси: I фаза — газ "мертвого пространства", II фаза — смесь из газа "мертвого пространства" и альвеолярного газа, III фаза — плато альвеолярного газа. Б. Капнограмма при тяжелом хроническом обструктивном забо­левании легких. Фаза альвеолярного плато отсутствует. Увеличен альвеолоартериальный градиент CO2. В. Быстрое пре­ходящее снижение концентрации CO2 во время III фазы указывает на попытку самостоятельного вдоха. Г. Во время вдоха концентрация CO2 не снижается до ноля, что может свидетельствовать о дисфункции клапана выдоха или истощении сорбента CO2. Д. Присутствие выдыхаемого газа в фазе вдоха свидетельствует о нарушении работы клапана вдоха

Клинические особенности. Фактически чрескожные датчики измеряют пар­циальное кожное давление - student2.ru

Рис. 6-30.Чрескожный кислородный датчик прикреп­лен к предплечью больного

Постепенное снижение PtcO2 может быть обусловлено снижением PaO2 или ухудшением перфузии кожи. Отсутствие устойчивой корреляции между Ptc02 и PaO2 следует рассматривать не как дефект ме-тодики, а скорее, как раннее предупреждение о не­адекватной перфузии тканей (например, при шоке, гипервентиляции, гипотермии). Индекс PtcO2, представляющий собой отношение PtcO2 к PaO2, изменяется пропорционально сердечному выбросу и периферическому потоку. Резкое снижение PtcO2 указывает на смещение датчика и экспози­цию его к воздуху помещения.

Популярность чрескожного мониторинга не сравнялась с таковой у пульсоксиметрии из-за за­трат времени на прогревание, трудностей в эксплу­атации датчиков и сложности в интерпретации данных. К сожалению, эти технические затрудне­ния пока ограничивают клиническое применение чрескожного мониторинга содержания O2, кото­рый является истинным индикатором доставки кислорода к ткани, хотя бы и к коже. Пульсокси-метрию и чрескожный мониторинг O2 следует рас­сматривать как взаимно дополняющие друг друга, но не конкурирующие методики. Например, сни­жение PtсO2 в сочетании с неизмененным SaO2 — достоверный показатель недостаточной перфузии тканей. Появление конъюнктивальных кислород­ных датчиков, которые могут неинвазивно опреде­лять артериальный рН, возможно, оживит интерес к этой методике.

Мониторинг анестезиологических газов

Показания

Мониторинг анестезиологических газов обеспечи­вает ценную информацию при общей анестезии.

Противопоказания

Противопоказаний не существует, хотя высокая стоимость ограничивает проведение данного мо­ниторинга.

Методики

К наиболее распространенным методикам анализа анестезиологических газов относятся масс-спект-рометрия, рамановская спектроскопия и абсорб­ция инфракрасных лучей. Из бокового порта в сег­менте дыхательного контура образцы газовой смеси под воздействием вакуумной помпы через длинную трубку диаметром 1 мм поступают внутрь масс-спектрометра,где и осуществляется их анализ. Из финансовых соображений один масс-спектрометр обычно обслуживает несколько операционных, при этом клапан-направитель ав­томатически регулирует забор образцов в операци­онных. Образец газа ионизируется электронным лучом и затем проходит через магнитное поле. Ионы с высоким соотношением масса: заряд в маг­нитном поле отклоняются слабее и следуют по кривой большего радиуса (рис. 6-31). Спектр от­клонения ионов представляет собой основу для анализа. Газы с идентичной молекулярной массой (CO2 и N2O) дифференцируются по отклонению в магнитном поле их фрагментов, образующихся при бомбардировке образца электронным лучом.

Рамановская спектроскопияидентифицирует газы и измеряет их концентрацию путем анализа интенсивности световой эмиссии, которая проис­ходит при возвращении молекул газа к исходному (невозбужденному) энергетическому состоянию после воздействия лазерным лучом.

Инфракрасные анализаторыоснованы на раз­личных методиках, принципиально сходных с кап-нографией. Для измерения абсорбции инфракрас­ных лучей используют акустические датчики, параинфракрасные оптические датчики и оптичес­кие датчики спектра, удаленного от инфракрасно­го. Молекулы кислорода не абсорбируют инфра­красные лучи, поэтому их концентрация не может быть измерена с помощью данной технологии.

Наши рекомендации