Раздражители гладких мышц

Раздел I

ОБЩАЯ ФИЗИОЛОГИЯ

ВВЕДЕНИЕ

Каждая из ста триллионов клеток организма человека отличается чрезвычайно сложной структурой, способностью к самоорганизации и многостороннему взаимодей­ствию с другими клетками. Число процессов, осуществляемых каждой клеткой, и коли­чество перерабатываемой при этом информации намного превосходят то, что сегодня имеет место на каком-нибудь крупном производственном комбинате. Тем не менее клетка представляет собой лишь одну из сравнительно элементарных подсистем в сложной иерархии систем, формирующих живой организм.

Все эти системы являются в высшей степени упорядоченными. Нормальная функ­циональная структура любой из них и нормальное существование каждого элемента системы (в том числе каждой клетки) возможны благодаря непрерывному обмену ин­формацией между элементами (и между клетками).

Обмен информацией происходит посредством прямого (контактного) взаимодейст­вия между клетками, в результате транспорта веществ с тканевой жидкостью, лимфой и кровью (гуморальная связь — от лат. humor — жидкость), а также при передаче от клетки к клетке биоэлектрических потенциалов, что представляет самый быстрый способ передачи информации в организме. У многоклеточных организмов развилась специаль­ная система, обеспечивающая восприятие, передачу, хранение, переработку и воспроиз­ведение информации, закодированной в электрических сигналах. Это — нервная система, достигшая у человека наивысшего развития. Чтобы понять природу биоэлектрических явлений, т. е. сигналов, при помощи которых нервная система осуществляет передачу ин­формации, необходимо прежде всего рассмотреть некоторые стороны общей физиологии так называемых возбудимых тканей, к которым относятся нервная, мышечная и желези­стая ткани.

Глава 2

ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

Все живые клетки обладают раздражимостью, т. е. способностью под влиянием определенных факторов внешней или внутренней среды, так называемых раздражителей, переходить из состояния физиологического покоя в состояние активности. Однако тер­мин «возбудимые клетки» применяют лишь по отношению к нервным, мышечным и секре­торным клеткам, способным в ответ на действие раздражителя генерировать специали­зированные формы колебаний электрического потенциала.

Первые данные о существовании биоэлектрических явлений («животное электричество») были получены в третьей четверти XVIII в. при. изучении природы электрического разряда, наносимого некоторыми рыбами при защите и нападении. Многолетний научный спор (1791 —1797) между фи­зиологом JI. Гальвани и физиком А. Вольта о природе «животного электричества» завершился двумя крупными открытиями: были установлены факты, свидетельствующие о наличии электриче­ских потенциалов в нервной и мышечной тканях, и открыт новый способ получения электрического тока при помощи разнородных металлов — создан гальванический элемент («вольтов столб»). Од­нако первые прямые измерения потенциалов в живых тканях стали возможны только после изобре­тения гальванометров. Систематическое исследование потенциалов в мышцах и нервах в состоянии покоя и возбуждения было начато Дюбуа-Реймоном (1848). Дальнейшие успехи в изучении био­электрических явлений были тесно связаны с усовершенствованием техники регистрации быстрых колебаний электрического потенциала (струнные, шлейфные и катодные осциллографы) и методов их отведения от одиночных возбудимых клеток. Качественно новый этап в изучении электрических явлений в живых тканях — 40—50-е годы нашего века. С помощью внутриклеточных микроэлектро­дов удалось произвести прямую регистрацию электрических потенциалов клеточных мембран. Ус­пехи электроники позволили разработать методы изучения ионных токов, протекающих через мем­брану при изменениях мембранного потенциала или при действии на мембранные рецепторы биоло­гически активных соединений. В последние годы разработан метод, позволяющий регистрировать ионные токи, протекающие через одиночные ионные каналы.

Различают следующие основные виды электрических ответов возбудимых клеток: локальный ответ; распространяющийся потенциал действия и сопровождающие его следовые потенциалы; возбуждающие и тормозные постсинаптические потенциалы; гене­раторные потенциалы и др. В основе всех этих колебаний потенциала лежат обратимые изменения проницаемости клеточной мембраны для определенных ионов. В свою очередь изменение проницаемости является следствием открывания и закрывания существующих в клеточной мембране ионных каналов под влиянием действующего раздражителя.

Энергия, используемая при генерации электрических потенциалов, запасена в покоя­щейся клетке в виде градиентов концентраций ионов Na+, Са2+, К+, С1~ по обе стороны поверхностной мембраны. Указанные градиенты создаются и поддерживаются работой специализированных молекулярных устройств, так называемых мембранных ионных на­сосов. Последние используют для своей работы энергию обмена веществ, выделяющуюся при ферментативном расщеплении универсального клеточного донатора энергии — аде- нозинтрифосфорной кислоты (АТФ).

Изучение электрических потенциалов, сопровождающих процессы возбуждения и торможения в живых тканях, имеет важное значение как для понимания природы этих процессов, так и для выявления характера нарушений деятельности возбудимых клеток при различных видах патологии.

В современной клинике особенно широкое распространение получили методы реги­страции электрических потенциалов сердца (электрокардиография), мозга (электроэн­цефалография) и мышц (электромиография).

ПОТЕНЦИАЛ ПОКОЯ

Термином «мембранный потенциал» (потенциал покоя) принято называть транс­мембранную разность потенциалов; существующую между цитоплазмой и окружающим клетку наружным раствором. Когда клетка (волокно) находится в состоянии физиоло­гического покоя, ее внутренний потенциал отрицателен по отношению к наружному, ус­ловно принимаемому за нуль. У различных клеток мембранный потенциал варьирует от —50 до —90 мВ.

Чтобы измерить потенциал покоя и проследить его изменения, вызываемые тем или иным воздействием на клетку, применяют технику внутриклеточных микроэлектродов (рис. 1).

Микроэлектрод представляет собой микропипетку, т. е. тонкий капилляр, вытянутый из стек­лянной трубочки. Диаметр его кончика около 0,5 мкм. Микроиипетку заполняют солевым раствором (обычно 3 М К.С1), погружают в него металлический электрод (хлорированную серебряную прово­лочку) и соединяют с электроизмерительным прибором — осциллографом, снабженным усилителем постоянного тока.

Микроэлектрод устанавливают над исследуемым объектом, например скелетной мышцей, а за­тем при помощи микроманипулятора — прибора, снабженного микрометрическими винтами, вводят внутрь клетки. Электрод обычных размеров погружают в нормальный солевой раствор, в котором находится исследуемая ткань.

Как только микроэлектрод прокалывает поверхностную мембрану клетки, луч осцил­лографа сразу же отклоняется от своего исходного (нулевого) положения, обнаруживая
тем самым существование разности потенциалов между поверхностью и содержимым клетки. Даль­нейшее продвижение микроэлектрода внутри про­топлазмы на положении луча осциллографа не сказывается. Это свидетельствует о том, что по­тенциал действительно локализуется на клеточной мембране.

При удачном введении микроэлектрода мем­брана плотно охватывает его кончик и клетка со­храняет способность функционировать в течение нескольких часов, не проявляя признаков повреж­дения.

Существует множество факторов, меняющих потенциал покоя клеток: приложение электричес­кого тока, изменение ионного состава среды, воз­действие некоторых токсинов, нарушение кисло­родного снабжения ткани и т. д. Во всех тех слу­чаях, когда внутренний потенциал уменьшается (становится менее отрицательным), говорят о де­поляризации мембраны; противоположный сдвиг потенциала (увеличение отрицательного заряда внутренней поверхности клеточной мембраны) на­зывают гиперполяризацией.

природа потенциала покоя

Еще в 1896 г. В. Ю. Чаговец высказал гипотезу об ионном механизме электрических потенциалов в живых клетках и сделал попытку применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Ю. Бернштей-ном была развита мембранно-ионная теория, которую модифицировали и экспериментально обосновали Ходжкин, Хаксли и Катц (1949—1952). В настоящее время последняя теория пользуется всеобщим признанием. Согласно указанной теории, наличие электрических потенциалов в живых клетках обусловлено неравенством концентрации ионов Na+, К+, Са2+ и С1~ внутри и вне клетки и различной проницаемостью для них поверхностной мембраны.

Раздражители гладких мышц - student2.ru

Осциллограф
Рис. I. Измерение потенциала покоя мы- шечного во.юкна (А) с гюмотью внут­риклеточного микроэлектрода (схема).
М — м»кроэлектрод; И - инднффератный злектрол. Луч на экран? осциллографа (G) показывает, что до прокола мембраны ми к- роэлектродом разность потенциала между М и И была ранни нулю. В момент прокола (показан стрелкой) обнаружена раз ноет ь потенциалов, указывающая, что внутренняя сторона мембраны заряжена шктроотри- цагельнп по отношению к сс наружной по- верхностн.

Из данных табл. 1 видно, что содержимое нервного волокна богато К+ и органиче­скими анионами (практически не проникающими через мембрану) и бедно Na+ и С1~.

мВ.

Концентрация К+ в цитоплазме нервных и мышечных клеток в 40—50 раз выше, чем в наружном растворе, и если бы мембрана в покое была проницаема только для этих ионов, то потенциал покоя соответствовал бы равновесному калиевому потенциалу (EJ, рассчитанному по формуле Нернста:

RT

■'"х-

где R — газовая постоянная, F — число Фарадея, Т—абсолютная температура, Ко — концентрация свободных ионов калия в наружном растворе, Кг — их концентрация в цитоплазме

При


Раздражители гладких мышц - student2.ru Рис. 2. Возникновение разности потенциалов на искусственной мембране, разделяющей ра­створы KiSOi разной концентрации (С[ и С2).

Мембрана избирательно проницаема для ионов К4" (маленькие кружки) и не пропускает ионы SO Г (большие кружки). 1,2 — электроды,опушенные в раствор; 3 — электроизмерительный прибор.

Таблица 1 генциалы, потенциалы покоя и действия некоторых ни разных авторов)
1Й внут- >) сред, Равновесный потенциал для разных ионов. мВ Измеренные по­тенциалы, мВ
CI, С1я" К" Na* CI покоя на мак­симуме спайка
-88 +57 i -42 -60 +50
157 496 -90 +46 -29 -60 +35
I G4 -98 +49 -105 -88 +34
кТ25 -90 + 60 -70 —70 +30

Чтобы понять, каким образом возни­кает этот потенциал, рассмотрим следую­щий модельный опыт (рис. 2).

Представим сосуд, разделенный ис­кусственной полупроницаемой мембра­ной. Стенки пор этой мембраны заряжены электроотрицательно, поэтому они про­пускают только катионы и непроницаемы для анионов. В обе половины сосуда на­лит солевой раствор, содержащий ионы К+, однако их концентрация в правой части сосуда выше, чем в левой. Вслед­ствие этого концентрационного градиента ионы К+ начинают диффундировать из правой половины сосуда в левую, принося туда свой положительный заряд. Это при­водит к тому, что непроникающие анионы начинают скапливаться у мембраны в правой половине сосуда. Своим отрица­тельным зарядом они электростатически будут удерживать К+ у поверхности мем­браны в левой половине сосуда. В резуль­тате мембрана поляризуется, и между двумя ее поверхностями создается раз­ность потенциалов, соответствующая равновесному калиевому потенциалу (£к).

Предположение о том, что в состоя­нии покоя мембрана нервных и мышечных

волокон избирательно проницаема для К+ и что именно их диффузия создает потенциал покоя, было высказано Бернштейном еще в 1902 г. и подтверждено Ходжкиным с сотр. в 1962 г. в опытах на изолированных гигантских аксонах кальмара. Из волокна диаметром около 1 мм осторожно выдавливали цитоплазму (аксоплазму) и спавшуюся оболочку заполняли искусственным солевым раствором. Когда концентрация К+ в растворе была близка к внутриклеточной, между внутренней и наружной сторонами мембраны устанав­ливалась разность потенциалов, близкая к значению нормального потенциала покоя (—50--- 80 мВ), и волокно проводило импульсы. При уменьшении внутриклеточной и повышении наружной концентрации К.+ потенциал мембраны уменьшался или даже изменялся его знак (потенциал становился положительным, если в наружном растворе концентрация К+ была выше, чем во внутреннем).

Такие опыты показали, что концентрированный градиент К+ действительно является основным фактором, определяющим величину потенциала покоя нервного волокна. Од­нако покоящаяся мембрана проницаема не только для К+, но (правда, в значительно меньшей степени) и для Na+. Диффузия этих положительно заряженных ионов внутрь клетки уменьшает абсолютную величину внутреннего отрицательного потенциала клет­ки, создаваемого диффузией К+. Поэтому потенциал покоя волокон (—50 - 70 мВ) менее отрицателен, чем рассчитанный по формуле Нернста калиевый равновесный по­тенциал.

Ионы С1~ в нервных волокнах не играют существенной роли в генезе потенциала покоя, поскольку проницаемость для них покоящейся мембраны относительно мала. В от­личие от этого в скелетных мышечных волокнах проницаемость покоящейся мембраны для ионов хлора сравнима с калиевой, и потому диффузия С1~ внутрь клетки увеличи­вает значение потенциала покоя. Рассчитанный хлорный равновесный потенциал (Eel)

при соотношении С1

ТТГ=_85 мВ.

Таким образом, величина потенциала покоя клетки определяется двумя основными факторами: а) соотношением концентраций проникающих через покоящуюся поверхно­стную мембрану катионов и анионов; б) соотношением проницаемостей мембраны для этих ионов.

Для количественного описания этой закономерности используют обычно уравнение Гольд- мана — Ходжкина — Катца:

М~ Р Р* • К?+ Р\а• Na,4* Рсл• СIо" *

где Em — потенциал покоя, Рю PNa, Pci — проницаемости мембраны для ионов К+, Na+ и С1~ соот­ветственно; К0+ Na0+; С10" — наружные концентрации ионов К+, Na+ и СГ а Бц+ Naf и Cli" — их внутренние концентрации.

Было рассчитано, что в изолированном гигантском аксоне кальмара при Ещ = —50 мВ имеется следующее соотношение между ионными проницаемостями покоящейся мембраны:

Рк:Рма-Ра= 1:0,04:0,45.

Уравнение дает объяснение многим наблюдаемым в эксперименте и в естественных условиях изменениям потенциала покоя клетки, например ее стойкой деполяризации при действии некоторых токсинов, вызывающих повышение натриевой проницаемости мембраны. К таким токсинам относятся растительные яды: вератридин, аконитин и один из наиболее сильных нейротоксинов — батра- хотоксин, продуцируемый кожными железами колумбийских лягушек.

Деполяризация мембраны, как это следует из уравнения, может возникать и при неизменной PNA, если повысить наружную концентрацию ионов К+ (т. е. увеличить отношение Ko/Ki). Такое изменение потенциала покоя является отнюдь не только лабораторным феноменом. Дело в том, что концентрация К+ в межклеточной жидкости заметно повышается во время активации нервных и мышечных клеток, сопровождающейся повышением Рк. Особенно значительно возрастает концен­трация К+ в межклеточной жидкости при нарушениях кровоснабжения (ишемия) тканей, например ишемии миокарда. Возникающая при этом деполяризация мембраны приводит к прекращению ге­нерации потенциалов действия, т. е. нарушению нормальной электрической активности клеток.

РОЛЬ ОБМЕНА ВЕЩЕСТВ В ГЕНЕЗЕ

И ПОДДЕРЖАНИИ ПОТЕНЦИАЛА ПОКОЯ

(НАТРИЕВЫЙ НАСОС МЕМБРАНЫ)

Несмотря на то что потоки Na+ и К+ через мембрану в покое малы, разность кон­центраций этих ионов внутри клетки и вне ее должна была бы в конечном итоге вы­ровняться, если бы в клеточной мембране не существовало особого молекулярного уст­ройства — «натриевого насоса», которое обеспечивает выведение («выкачивание») из цитоплазмы проникающих в нее Na+ и введение («нагнетание») в цитоплазму К+. Натриевый насос перемещает Na+ и К+ против их концентрационных градиентов, т. е. совершает определенную работу. Непосредственным источником энергии для этой работы является богатое энергией (макроэргическое) соединение — аденозинтрифосфорная кислота (АТФ), являющаяся универсальным источником энергии живых клеток. Расщепление АТФ производится макромолекулами белка — ферментом аденозинтрифосфатазой (АТФ-азой), локализованной в поверхностной мембране клетки. Энергия, выделяющаяся при расщеплении одной молекулы АТФ, обеспечивает выведение из клетки трех ионов Na+ взамен на два иона К+, поступающих в клетку снаружи.

Торможение активности АТФ-азы, вызываемое некоторыми химическими соединениями (например, сердечным гликозидом уабаином), нарушает работу насоса, вследствие чего клетка теряет К+ и обогащается Na + . К такому же результату приводит торможение окислительных и гликолитических процессов в клетке, обеспечивающих синтез АТФ. В эксперименте это достигается при помощи ядов, ингибирующих указанные процессы. В условиях нарушения кровоснабжения тканей, ослабления процесса тканевого дыхания происходит угнетение работы электрогенного насоса и как следствие накопление К+ в межклеточных щелях и деполяризация мембраны.

Роль АТФ в механизме активного транспорта Na+ прямо доказана в опытах на ги­гантских нервных волокнах кальмара. Было установлено, что путем введения внутрь волокна АТФ можно временно восстановить работу натриевого насоса, нарушенную ин­гибитором дыхательных ферментов цианидом.

Первоначально полагали, что натриевый насос электронейтрален, т. е. число обме­ниваемых ионов Na+ и К+ равно. В дальнейшем выяснилось, что на каждые три иона Na+, выводимые из клетки, в клетку поступает только два иона К+. Это означает, что насос электрогенен: он создает на мембране разность потенциалов, суммирующуюся с потенциалом покоя.

Этот вклад натриевого насоса в нормальную величину потенциала покоя у различных клеток не одинаков: он, по-видимому, незначителен в нервных волокнах кальмара, но существен для потенциала покоя (составляет около 25% от полной величины) в гигантских нейронах моллюсков, гладких мышцах.

Таким образом, в формировании потенциала покоя натриевый насос играет двоякую роль: 1) создает и поддерживает трансмембранный градиент концентраций Na+ и К+; 2) генерирует разность потенциалов, суммирующуюся с потенциалом, создаваемым диффузией К+ по концентрационному градиенту.

ПОТЕНЦИАЛ ДЕЙСТВИЯ

Потенциалом действия называют быстрое колебание мембранного потенциала, воз­никающее при возбуждении нервных, мышечных и некоторых других клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер временных изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения. Возникнув в месте раздражения, потенциал действия распространяется вдоль нервного или мышечного волокна, не изменяя своей амплитуды. Наличие порога и независимость амплитуды потенциала действия от силы вызвавшего его стимула получили название закона «все или ничего».

MB _

+30 —

t*

_ a I \6

! I t

-60 -

= 11 v

-100 —

Л Л Л Л

I I I I I i ) I П И I I I I I I H 11 '

Рис. 3. Потенциал действия скелетного мышечного волокна. зарегистрированный с помощью внутри­клеточного микроэлектрода.

а — фи за :1сполнрк.<<тии< б фаз я рсполярпзацни, в - фаза следовой деполяризации (отрицатель­ный следовой потенциал). Момент нанссения раздражении показан стрелкой.

Рис. 4. Потенциал действия гигантского аксона кальмара, отводимый г помощью внутриклеточного электрода [Ходжкин А.. 1965].

По вертикали отложены значения потенциала внутрнклеточного электрода по отношению к его потенциалу в наружном растворе (в милливольтах); а —следовой положительный потенциал; 6 отметка времени — 500 колебаний в 1 с.

В естественных условиях потенциалы действия генерируются в нервных волокнах при раздражении рецепторов или возбуждении нервных клеток. Распространение потен­циалов действия по нервным волокнам обеспечивает передачу информации в нервной системе. Достигнув нервных окончаний, потенциалы действия вызывают секрецию хими­ческих веществ (медиаторов), обеспечивающих передачу сигнала на мышечные или нерв­ные клетки. В мышечных клетках потенциалы действия инициируют цепь процессов, вы­зывающих сократительный акт. Ионы, проникающие в цитоплазму во время генерации потенциалов действия, оказывают регулирующее влияние на метаболизм клетки и, в част­ности, на процессы синтеза белков, составляющих ионные каналы и ионные насосы.

Для регистрации потенциалов действия используют вне- или внутриклеточные элект­роды. При внеклеточном отведении электроды подводят к наружной поверхности во­локна (клетки). Это позволяет обнаружить, что поверхность возбужденного участка на очень короткое время (в нервном волокне на тысячную долю секунды) становится заря­женной отрицательно по отношению к соседнему покоящемуся участку.

Раздражители гладких мышц - student2.ru

-70

Использование внутриклеточных микроэлектродов позволяет количественно охарак­теризовать изменения мембранного потенциала во время восходящей и нисходящей фаз потенциала действия. Установлено, что во время восходящей фазы (фаза деполяриза­ции) происходит не просто исчезновение потенциала покоя (как это первоначально пред­полагали), а возникает разность потенциалов обратного знака: внутреннее содержимое клетки становится заряженным положительно по отношению к наружной среде, иными словами, происходит реверсия мембранного потенциала. Во время нисходящей фазы (фазы реполяризации) мембранный потенциал возвращается к своему исходному зна­чению. На рис. 3 и 4 приведены примеры записей потенциалов действия в скелетном мышечном волокне лягушки и гигантском аксоне кальмара. Видно, что в момент достиже­ния вершины (пика) мембранный потенциал составляет + 30 / + 40 мВ и пиковое колеба­ние сопровождается длительными следовыми изменениями мембранного потенциала, после чего мембранный потенциал устанавливается на исходном уровне. Длительность пика потенциала действия у различных нервных и скелетных мышечных волокон варьи-

____ L-

б

Рис. 5. Суммация следовых потенциалов в диаф- рагмальном нерве кошки при кратковременном его раздражении ритмическими импульсами.

Восходящая часть потенциала действия не видна. Записи начинаются с отрицательных следовых потенциалов (а), переходящих в положительные потенциалы (б). Верхняя кривая — ответ на одиночное раздражение. С увеличенем частоты стимуляции (от 10 до 250 в 1 с) следовой положительный потенциал (следовая гиперполяризация) резко возрастает.


 


____

рует от 0,5 до 3 мс, причем фаза реполяризации продолжительнее фазы деполяризации, б Длительность потенциала действия, особенно

фазы реполяризации, находится в тесной зависимости от температуры: при охлаждении на 10 °С продолжительность пика увеличивается примерно в 3 раза.

Изменения мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами.

Различают два вида следовых потенциалов — следовую деполяризацию и следовую гиперполяризацию. Амплитуда следовых потенциалов обычно не превышает нескольких милливольт (5—10% от высоты пика), а длительность их у различных волокон состав­ляет от нескольких миллисекунд до десятков и сотен секунд.

Зависимость пика потенциала действия и следовой деполяризации может быть рас­смотрена на примере электрического ответа скелетного мышечного волокна. Из записи, приведенной на рис. 3, видно, что нисходящая фаза потенциала действия (фаза реполя­ризации) делится на две неравные части. Вначале падение потенциала происходит бы­стро, а затем сильно замедляется. Этот медленный компонент нисходящей фазы потен­циала действия называют следовой деполяризацией.

Пример следовой гиперполяризации мембраны, сопровождающей пик потенциала действия в одиночном (изолированном) гигантском нервном волокне кальмара, показан на рис. 4. В этом случае нисходящая фаза потенциала действия непосредственно пере­ходит в фазу следовой гиперполяризации, амплитуда которой в данном случае достигает 15 мВ. Следовая гиперполяризация характерна для многих безмякотных нервных воло­кон холоднокровных и теплокровных животных. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя. Следовые потен­циалы в значительно большей мере, чем пики потенциалов действия, чувствительны к изменениям исходного потенциала покоя, ионного состава среды, кислородного снабже­ния волокна и т. д.

Характерная особенность следовых потенциалов — их способность изменяться в процессе ритмической импульсации (рис. 5).

ИОННЫЙ МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ПОТЕНЦИАЛА ДЕЙСТВИЯ

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны.

Как отмечалось, в состоянии покоя проницаемость мембраны для калия превышает ее проницаемость для натрия. Вследствие этого поток К.+ из цитоплазмы во внешний раствор превышает противоположно направленный поток Na+. Поэтому наружная сто­рона мембраны в покое имеет положительный потенциал по отношению к внутренней.

При действии на клетку раздражителя проницаемость мембраны для Na+ резко повышается и в конечном итоге становится примерно в 20 раз больше проницаемости для К+. Поэтому поток Na+ из внешнего раствора в цитоплазму начинает превышать
направленный наружу калиевый ток. Это приводит к изменению знака (реверсии) мембранного потенциала: внутреннее со­держимое клетки становится заряженным положительно по отношению к ее наружной поверхности. Указанное изменение мембранного потенциала соответствует восходящей фазе потенциала действия (фаза деполяризации).

Повышение проницаемости мембраны для Na+ продолжается лишь очень короткое время. Вслед за этим проницаемость мембраны для Na+ вновь понижается, а для К+ возрастает. воемя, «с

Процесс, ведущий к понижению ранее ^ , 0 „ „ - / \

кJк Рис. 6. Временной ход изменении натриевои (gNa)

увеличенной натриевои ^ проницаемости и каЛиевой (gK) проницаемости мембраны гигант- мембраны, назван натриевой инактивацией, ского аксона кальмара во время генерации потен- В результате инактивации поток Na+ внутрь циала действия (V).

цитоплазмы резко ослабляется. Увеличение же калиевой проницаемости вызывает усиление потока К+ из цитоплазмы во внешний раствор. В итоге этих двух процессов и происходит реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к наружному раствору. Этому изменению потенциала соответствует нисходящая фаза потенциала действия (фаза реполяри-зации).

Одним из важных аргументов в пользу натриевой теории происхождения потенциалов дей­ствия был факт тесной зависимости его амплитуды от концентрации Na+ во внешнем растворе. Опыты на гигантских нервных волокнах, перфузируемых изнутри солевыми растворами, позволили получить прямое подтверждение правильности натриевой теории. Установлено, что при замене аксоплазмы солевым раствором, богатым К+, мембрана волокна не только удерживает нормальный потенциал покоя, но в течение длительного времени сохраняет способность генерировать сотни тысяч потенциалов действия нормальной амплитуды. Если же К+ во внутриклеточном растворе частично заменить на Na+ и тем самым снизить градиент концентрации Na+ между наружной средой и внутренним раствором, амплитуда потенциала действия резко понижается. При полной замене К+ HaNa+ волокно утрачивает способность генерировать потенциалы действия.

Эти опыты не оставляют сомнения в том, что поверхностная мембрана действительно является местом возникновения потенциала как в покое, так и при возбуждении. Становится очевидным, что разность концентраций Na+ и К+ внутри и вне волокна является источником электродвижущей силы, обусловливающей возникновение потенциала покоя и потенциала действия.

На рис. 6 показаны изменения натриевой и калиевой проницаемости мембраны во время генерации потенциала действия в гигантском аксоне кальмара. Аналогичные отно­шения имеют место в других нервных волокнах, телах нервных клеток, а также в скелет­ных мышечных волокнах позвоночных животных. В скелетных мышцах ракообразных животных и гладких мышцах позвоночных в генезе восходящей фазы потенциала дейст­вия ведущую роль играют ионы Са2+. В клетках миокарда начальный подъем потен­циала действия связан с повышением проницаемости мембраны для Na+, а плато по­тенциала действия обусловлено повышением проницаемости мембраны и для ионов Са2+.

О ПРИРОДЕ ИОННОЙ ПРОНИЦАЕМОСТИ МЕМБРАНЫ. ИОННЫЕ КАНАЛЫ

Раздражители гладких мышц - student2.ru

В основе рассмотренных изменений ионной проницаемости мембраны при генерации потенциала действия лежат процессы открывания и закрывания специализированных ионных каналов в мембране, обладающих двумя важнейшими свойствами: 1) избира­тельностью (селективностью) по отношению к определенным ионам; 2) электровозбуди­
мостью, т. е. способностью открываться и закрываться в ответ на изменения мембранного потенциала. Процесс открывания и закрывания канала имеет вероятностный характер (мембранный потенциал лишь определяет вероятность нахождения канала в открытом или закрытом состоянии).

Так же как ионные насосы, ионные каналы образованы макромолекулами белков, пронизы­вающими липидный бислой мембраны. Химическая структура этих макромолекул еще на расшифро­вана, поэтому представления о функциональной организации каналов строятся пока главным обра­зом косвенно — на основании анализа данных, полученных при исследованиях электрических яв­лений в мембранах и влияния на каналы различных химических агентов (токсинов, ферментов, лекарственных веществ и т. д.). Принято считать, что ионный канал состоит из собственно транс­портной системы и так называемого воротного механизма («ворот»), управляемого электрическим полем мембраны. «Ворота» могут находиться в двух положениях: они полностью закрыты или пол­ностью открыты, поэтому проводимость одиночного открытого канала — постоянная величина. Суммарная проводимость мембраны для того или иного иона определяется числом одновременно открытых каналов, проницаемых для данного иона.

Это положение может быть записано следующим образом:

iV ■ су,

где gi — суммарная проницаемость мембраны для внутриклеточного иона; N — общее число соот­ветствующих ионных каналов (в данном участке мембраны); а - -доля открытых каналов; у — проводимость одиночного канала.

По своей селективности электровозбудимые ионные каналы нервных и мышечных клеток под­разделяются на натриевые, калиевые, кальциевые, хлорные. Селективность эта не абсолютная: название канала указывает лишь ион, для которого данный канал наиболее проницаем.

Вну трепни* потенциал Раздражители гладких мышц - student2.ru 4 6 8 -во -20 0 ?0 40 чЕ) время, мс ф Рис.7. Временной ход изменений натриевой (gNa) и калиевой (gK) проницаемости мембраны при де­поляризации мембраны аксона на 56 мВ.
а — сплошные линии показывают проницаемость при длительной деполяризации, а пунктирные — при репо- ляризации мембраны через 0,6 и 6,3 мс; б зависимость пиковой величины натриевой (gNa) и стационарного уровня калиевой (gx) проницаемости от мембранного потенциала.

Через открытые каналы ионы движутся по концентрационному и электрическому градиентам. Эти потоки ионов приводят к изменениям мембранного потенциала, что в свою очередь изменяет среднее число открытых каналов и соответственно величину ион­ных токов и т. д. Такая круговая связь важна для генерации потенциала действия, но она делает невозможным количественную оценку зависимости ионных проводимостей от величины генерируемого потенциала. Для изучения этой зависимости применяется «метод фиксации потенциала». Сущность данного метода состоит в насильственном под­держании мембранного потенциала на любом заданном уровне. Так, подавая на мембра­ну ток, равный по величине, но обратный по знаку ионному току, проходящему через открытые каналы, и измеряя этот ток при различных потенциалах, исследователи полу­чают возможность проследить зависимость потенциала от ионных проводимостей мем-

Раздражители гладких мышц - student2.ru Рис. 8. Схематическое изображение электровозбудимого натриевого канала. Канал ( 1 ) образован макромолекулой белка 2), суженная часть которого соответствует «селективному фильтру». В канале имеются активационные (ш) и инактивационпые (h) «ворота», которые управляются электрическим полем мембраны. При потенциале покоя (а) наиболее вероятным является положение «закры­то» для активационных ворот и положение «открыто» для инактивационных. Деполяризация мембраны (б) приводит к быстрому открыванию т-«ворот» и медленному закрыванию Ь-«ворот», поэтому в начальный момент деполяризации обе пары «ворот» оказываются открытыми и через канал могут двигаться ионы в соот­ветствии с их концентрационными и электрическими градиентами. При продолжающейся деполяризации (и) инактивационные «ворота» закрываются и канал переходит в состояние инактивации.

браны. Чтобы из общего ионного тока, протекающего через мембрану, выделить его ком­поненты, соответствующие потокам ионов, например, через натриевые каналы, исполь­зуют химические агенты, специфически блокирующие все другие каналы. Соответствен­ным образом поступают при измерениях калиевого или кальциевого токов.

На рис. 7 показаны изменения натриевой (gNa) и калиевой (g%) проницаемости мембраны нервного волокна во время фиксированной деполяризации. Как отмечалось, величины gNa и gK отражают число одновременно открытых натриевых или калиевых каналов. Как видно, gNa быстро, за доли миллисекунды, достигла максимума, а затем медленно начала снижаться до исходного уровня. После окончания деполяризации способность натриевых каналов вновь открываться постепенно восстанавливается в течение десятков миллисекунд.

Наши рекомендации