Адаптация к невесомости
Из факторов, наиболее неадекватных для организма, являются условия невесомости.
Человек рождается, растет и развивается в естественных условиях только под действием сил земного притяжения. Сила притяжения формирует топографию функций скелетной мускулатуры и гравитационные рефлексы. Вся координированная мышечная работа формируется в условиях сил земного притяжения. Вегетативное обеспечение мышечной активности также во многом зависимо от силы гравитации. В частности, кровообращение построено на факторе силы притяжения. Сила притяжения способствует току крови по артериям, но препятствует току крови по венам, в связи с чем в организме развиваются механизмы, способствующие венозному кровотоку.
Когда при космическом полете человек попадает в условия невесомости, это резко нарушает как соматическую деятельность, так и работу внутренних органов. Экстеро- и интеро-рецепторы начинают сигнализировать о необычном состоянии скелетной мускулатуры и всех внутренних органов. Под влиянием такой необычной импульсации в фазу острой адаптации отмечается высокая степень дезорганизации двигательной деятельности и работы внутренних органов.
Дезорганизация функций глубока и имеет тенденцию прогрессировать. Она характеризуется изменением регионального тонуса сосудистой системы. В результате, в острый пе-
Рис. 106. Факторы, действующие на организм в условиях космического полета, и изменения в различных системах организма.
риод адаптации отмечается прилив крови к голове, целый ряд вестибулярных расстройств, изменение обмена веществ, которое проявляется в снижении уровня энергетического обмена. В тяжелых условиях отмечают нарушение минерального, в том числе кальциевого обмена, что зависит от двигательной активности в условиях недогрузок костной системы конечностей, особенно нижних. По-видимому, отрицательный баланс Са2+ в условиях космических полетов может быть связан и с эндокринными сдвигами (дезорганизация в соотношениях паратгормона и тиреокальцитонина, нарушение обмена витамина Д, эти изменения ведут к деструкции костей). Изменяется не только координация движении, но даже почерк. В экспериментах были обнаружены нарушения структуры передних рогов серого вещества спинного мозга, показано также снижение устойчивости физиологических систем в условиях физических нагрузок. Адаптация в этих условиях возможна лишь при кардинальной перестройке управляющих механизмов центральной нервной системы, формировании новых функциональных систем при обязательном использовании комплекса технических и тренировочных защитных мероприятий. Необходимо применять различные искусственные способы жизнеобеспечения в такой необычной и неадекватной для организма ситуации.
Возникает вопрос: возможна ли истинная адаптация к условиям невесомости, при которой возникает перестройка системы регулирования, адекватной существованию в условиях на Земле. Этот вопрос еше требует своего решения.
Физиология человека
АДАПТАЦИЯ К ГИПОКСИИ
Недостаток кислорода — один из часто встречающихся факторов внешней среды; в самом деле, гипоксия сопровождает очень многие физиологические и патологические процессы (подъем в горы и дыхание разреженным воздухом — классические примеры гипоксии); при интенсивных физических нагрузках также возникает недостаток кислорода, вследствие того, что мышцы поглощают кислород интенсивнее, чем он приносится кровью; анемия вследствие кровопотери или любой другой причины также вызывает гипоксию тканей; почти все болезни сердца и дыхания, как правило, сопровождаются развитием гипоксии.
Таким образом, можно констатировать, что гипоксия — универсальный действующий фактор, и в организме на протяжении многих веков эволюции выработались эффективные приспособительные механизмы к данному экстремальному воздействию.
Охарактеризуем кратко гипоксические состояния. Наиболее известна классификация гипоксии, включающая 4 больших класса:
1. Гипоксяческая гипоксия (снижено содержание кислорода в атмосферном воздухе, а
значит, в альвеолах и артериальной крови).
2. Анемическая гипоксия (недостаток эритроцитов или гемоглобина как основного пере
носчика кислорода).
3. Застойная, или цнркуляторная, гипоксия (возникает вследствие нарушений кровообра
щения из-за сердечной недостаточности).
4. Гистотоксическая гипоксия (в результате действия ядов (цианиды) блокированы фер
менты дыхательной цепи в тканях, в частности, конечное звено в переносе кислорода —
цитохромоксидаза).
Помимо этих классов, различают острую и хроническую гипоксию. Острая гипоксия возникает при резком уменьшении доступа кислорода в организм (при помещении исследуемого в барокамеру, откуда выкачивается воздух, при отравлении окисью углерода, при остром нарушении кровообращения или дыхания). Хроническая гипоксия возникает при длительном пребывании в горах или при любых других условиях недостаточного снабжения кислородом.
Как же организмы реагируют на гипоксическое воздействие? Для простоты возьмем в качестве модели гипоксии подъем в горы. При этом в качестве ответных мер на недостаток кислорода организм усилит работу тех органов и систем, которые осуществляют транспорт кислорода к клеткам: усилится кровообращение и дыхание, увеличится кислородная емкость крови вследствие роста концентрации эритроцитов и гемоглобина, изменится форма кривой диссоциации оксигемоглобияа со сдвигом вправо, повысится активность ферментов дыхательной цепи, изменится центральная регуляция вегетативных функций, направленная на более экономное использование кислорода, произойдет модификация поведения (ограничение двигательной активности, избегание воздействия высоких температур).
Ответные реакции на дефицит кислорода охватывают многие важнейшие физиологические системы организма. Остановимся более подробно на характеристике ответных реакций организма.
Первой компенсаторной реакцией на гипоксию является увеличение частоты сердечных сокращений, несколько увеличивается ударный объем сердца и минутный объем крови. Эта реакция направлена на ликвидацию недостатка кислорода в тканях. Так, если организм человека потребляет в покое 300 мл кислорода в минуту, а его парциальное давление во вдыхаемом воздухе (а, следовательно, и в крови) уменьшилось на 1/3, достаточно увеличить на 30% минутный объем крови, чтобы к тканям было доставлено то же количество кислорода. Раскрытие дополнительных капилляров в тканях реализует увеличение кровотока, так как при этом повышается скорость диффузии кислорода.
Увеличение интенсивности дыхания при гипоксии незначительно и только при выраженных степенях кислородного голодания (парциальное давление кислорода во вдыхаемом воздухе менее 80 мм рт. ст.) возникает углубление и учащение дыхания (одышка).
Объясняется это тем, что усиление дыхания в гипоксической атмосфере сопровождается гипокапнией, которая сдерживает увеличение легочной вентиляции и только через определенное время (1—2 недели) пребывания в условиях гипоксии происходит существенное увеличение легочной вентиляции из-за повышения чувствительности центров дыхания к углекислому газу.
При гипоксии возрастает количество эритроцитов и концентрация гемоглобина в крови в первые 3—5 дней (острый период) за счет опорожнения кровяных депо и сгущения крови, а далее за счет интенсификации кроветворения (выяснено, что уменьшение атмосферного давления на 100 мм рт. ст. вызывает нарастание содержания гемоглобина в крови на 10%). Изменяются также кислородтранспортные свойства гемоглобина, увеличивается сдвиг кривой диссоциации оксигемоглобина вправо, что способствует более полной отдаче кислорода тканям. В клетках возрастает количество митохондрий, увеличивается содержание ферментов дыхательной цепи, что позволяет интенсифицировать процессы использования энергии в клетке. И, наконец, происходит перестройка в центральной регуляции дыхания и кровообращения. Наиболее демонстративно это проявляется в изменении чувствительности дыхательного центра к углекислому газу. При адаптации к гипоксии чувствительность повышается; это позволяет увеличить легочную вентиляцию, поднять содержание кислорода в крови, улучшить снабжение организма кислородом и, что не менее важно, ослабить интенсивность работы сердечно-сосудистой системы и тем самым повысить резервные возможности организма.
Таким образом, в результате воздействия всех звеньев нейрогуморальной системы происходят структурно-функциональные перестройки в организме, в результате которых формируются адаптивные реакции к данному экстремальному воздействию.