Механизмы связи между нейронами

Каждый многоклеточный организм, каждая ткань, состоящая из отдельных клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Важное значение имеют процессы коммуникации клеток ЦНС. Главная задача их заключается в обработке и передаче информации, закодированной в виде электрических сигна­лов.

Хотя межнейронные взаимодействия могли бы осуществляться различными путями (например, с помощью влияния электрических полей, генерируемых близко расположен­ными нервными элементами, изменением ионного состава среды вследствие перераспре­деления ионов в результате предшествующей активности, выделением в окружающую среду различных продуктов обмена и т. д.), в основе деятельности мозга лежат в основ­ном механизмы, обеспечивающие передачу электрических сигналов с нейрона на нейрон через межклеточные соединения — синапсы, специализированные на передаче этих сигналов. Являясь главным механизмом связи между нейронами, синапсы во многом обеспечивают все многообразие функций мозга,-

Понятие синапс было введено в физиологию английским физиологом Ч. Шеррингто- ном (1897) для обозначения функционального контакта между нейронами. Следует отме­тить, однако, что еще в 60-х годах прошлого столетия И. М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого элемен­тарного нервного процесса. Чем сложнее устроена нервная системаи чем больше число составляющих мозг нервных элементов, тем более важное значение имеют синаптические контакты.

Структура и функция синапсов. Различные синаптические контакты отличаются друг от друга механизмом действия, локализацией на поверхности клетки, функциональ­ной направленностью (возбуждающие или тормозящие), способностью к модуляции в результате предшествующей активности. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому прежде чем рассматривать специфические особенности синапсов различных отделов ЦНС, необходимо описать общие принципы их функционирования.

Синапс представляет собой сложное структурное образование, в котором следует различать пресинаптическое звено или пресинапс (чаще всего это концевое разветвление аксона) и постсинаптическое звено или постсинапс(чаще всего участок.мембраны тела или дендрита другого нейрона). Кроме наиболее распространенных типов межнейронных контактов — аксосоматических и аксодендритических, существуют/также аксоаксонные, дендродендритические, сомато-дендритические и дендросоматические синапсы.

Пресинаптическое окончание либо образует у постсинаптической клетки так называ­емые концевые бляшки, или бутоны; либо формирует по своему ходу многочисленные последовательные зоны контакта с различными участками постсинаптического нейрона (так называемые проходящие синапсы).

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. В начале XX в. была четко сформулирована альтернатива: синаптическая передача осуществляется или электрическим, или хими­ческим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, хотя она и значительно сдала свои позиции после того, как химический механизм передачи был продемонстрирован в ряде периферических синапсов. Перфузия верхнего шейного симпатического ганглия (А. В. Кибяков), а также использование микроэлектродной техники для внутриклеточной регистрации синапти- ческих потенциалов нейронов ЦНС (Экклс) позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга. Эти факты послужили основанием для вывода об универсальности химического механизма передачи во всех синапсах ЦНС.

МикроэлектроДные исследования последних лет показали, однако, что в определен­ных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы как с химическим, так и электрическим меха­низмом передачи. Более того, в некоторых синаптических структурах сочетанно функцио­нируют и электрический и химический механизмы передачи (смешанные синапсы, или синапсы двоякого действия). Синапсы с электрическим механизмом передачи чаще; встречаются у животных с более примитивной нервной системой, хотя они и обнаружены в мозге млекопитающих, включая приматов. Их число уменьшается в процессе эмбрио­нального развития. Синапсы с химическим механизмом передачи составляют большую часть синаптического аппарата ЦНС высших животных и человека.

Структурные и функциональные особенности электрических, химических и смешан­ных синапсов. Для того чтобы потенциал действия, приходящий в пресинаптическое окончание аксона, мог непосредственно возбудить постсинаптическую мембрану, т. е. вызвать в ней изменение мембранного потенциала, необходимо, чтобы значительная часть тока, текущего через пресинаптическую мембрану, могла входить в постсинапти­ческую клетку. Условием для такого вхождения тока является низкое сопротивление участка, связывающего обе клетки (они должны быть электрически связаны), и отсут­ствие шунтов, по которым пресинаптический ток мог бы ответвиться и не попасть на постсинаптическую мембрану.

Если синаптическая щель, разделяющая пре- и постсинаптическую мембраны, широкая (как это имеет место в химических синапсах, где она составляет в среднем 10—20 нм), подавляющая часть пресинаптйческого тока шунтируется низким сопротив­лением щели и лишь примерно 0,0001 часть его попадает на постсинаптическую мем­брану. Эта величина слишком мала, чтобы вызвать ощутимый сдвиг мембранного потенл циала постсинаптического нейрона. Поэтому в синапсах с широкой синаптической щелью необходим другой механизм, способный изменить мембранный потенциал пост­синаптической клетки. Таким механизмом является выделение пресинапсом особых химических веществ — медиаторов, которые, воздействуя на специфические рецепторы постсинаптической мембраны, способны изменять состояние ионных каналов постси­наптической мембраны. Изменение ионной проницаемости постсинаптической мембраны, в свою очередь, приводит к возникновению постсинаптического ионного тока, вызываю­щего падение напряжения на постсинаптической мембране — постсинаптический потенциал. Работа химического синапса схематически изображена на рис. 62, а. Таким образом, генератор постсинаптического тока находится непосредственно в постсинапти-

механизмы связи между нейронами - student2.ru Рис. 62. Схема передачи возбуждения в химическом (а) и электрическом синапсе (б). Стрелками показано распространение электрического тока через мембрану пресинаптического окончания и постси на птиче скую мембрану на нейрон.

ческой мембране и запускается химическим медиатором, выделяемым пресинаптическим окончанием.

В электрических синапсах ширина синаптической щели составляет всего 2—4 им, что значительно меньше, чем в химических синапсах. Особенно важным является то, что в таких синапсах через синаптическую щель перекинуты мостики, образованные белко­выми частицами. Они представляют собой своеобразные каналы шириной-1—2 нм, пронизывающие пре- и постсинаптическую мембраны синапса. Благодаря существова­нию таких каналов, размеры которых позволяют переходить из клетки в клетку неоргани­ческим ионам и даже небольшим молекулам, электрическое сопротивление в области такого синапса (получившего название щелевого или высокопроницаемого контакта) оказывается очень низким. Это позволяет пресинаптическому току распространяться на постсинаптическую клетку без угасания. Поэтому механизм работы электрического синапса сходен в общих чертах с механизмом распространения волны деполяризации по нервному или мышечному волокну. Электрический ток течет от возбужденной области к невозбужденной и там вытекает наружу, вызывая ее деполяризацию (рис. 62, б). В электрическом синапсе потенциал действия достигает пресинаптического окончания и далее течет через межклеточные каналы, вызывая деполяризацию постсинаптической мембраны, т. е. генерируя возбуждающий постсинаптический потенциал (ВПСП). Важно подчеркнуть, что в электрическом синапсе генератор постсинаптического тока находится в пресинаптической мембране, где возникает активный процесс — потенциал действия. Из нее он пассивно (электротонически) распространяется на мембрану постсинаптической клетки. Поэтому синапсы с электрическим механизмом передачи часто обозначают как электротонические.

Структурная основа электрического синапса — высокопроницаемый щелевой кон­такт, обеспечивающий не только хорошую электрическую связь между нервными клет­ками, но и взаимный обмен различными органическими молекулами диаметром 1—2 нм. Более крупные молекулы, например белки, ДНК и РНК через межклеточные каналы не проходят. Однако и ограниченный обмен молекулами и ионами способен обеспечить определенную «метаболическую кооперацию» между нейронами, соединенными электри­ческими синапсами. Хотя электрические синапсы немногочисленны в ЦНС высших животных, они широко распространены в других возбудимых и невозбудимых тканях: в сердечной мышце, гладкой мускулатуре внутренних органов в печени, эпителиальной и железистых тканях,

V/у/ V- V

Jo^ L ^ г JoC

механизмы связи между нейронами - student2.ru

IT T T

механизмы связи между нейронами - student2.ru


 


a

. 6


 


Рис. 63. Схема чисто электрического синапса между дендрита ми мотонейронов лягушки (а ), смешан­ного синапса'между центральными окончаниями первичного афферентного нейрона и мотонейроном лягушки (б) и химического синапса между центральными окончаниями первичного афферентного нейрона и мотонейрона кошки (в).

В некоторых межнейронных синапсах электрическая и химическая передача осу­ществляются параллельно благодаря тому, что щель между пре- и постсинаптической мембранами имеет участки со структурой химического и электрического синапсов. Все 3 типа синапсов: электрический, химический и смешанный — схематически показаны на рис. 63. Обычно чисто электрические синапсы имеются между однотипными, близко расположенными нейронами, например между дендритами мотонейронов. Аксодендри- тические или аксосоматические синапсы, последовательно соединающие разные по функции и локализации нейроны, например первичные афферентные нейроны и мото­нейроны, имеют химическую или смешанную природу.

Электрические и химические синапсы значительно отличаются друг от друга не только механизмом передачи, но и многими функциональными свойствами:'

1. В синапсах с химическим механизмом передачи продолжительность синапти- ческой задержки у теплокровных составляет 0,2—0,5 мс. В электрических синапсах синаптическая задержка, т. е. интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, отсутствует.

2. Химические синапсы отличаются односторонним проведением: медиатор, обеспе чивающий передачу сигналов, содержится только в пресинаптическом звене. В электри ческих синапсах 'проведение чаще двустороннее, хотя геометрические особенности синапса делают проведение в одном направлении более эффективным. Кроме того, одно сторонность проведения в электрических синапсах может быть обеспечена полупроводни ковыми свойствами мембраны.

3. Ввиду того что в химических синапсах возникновение постсинаптического потен циала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение постсинаптического нейрона. В электрических синапсах активный процесс развивается в пресинаптическом звене, и поскольку нервный импульс всегда представляет собой волну деполяризации,
электрические синапсы могут обеспечить передачу только одного процесса — возбуждения.

4. Химические синапсы значительно лучше, чем электрические, сохраняют следы предшествующей активности. Поэтому химическая передача значительно более подвер жена модуляции под влиянием разных факторов.

5. Химические синапсы значительно более чувствительны к изменениям темпера туры, чем электрические, что имеет существенное значение для нервной системы пойкилотермных животных.

Поскольку химический механизм синаптической передачи имеет значительно более широкое распространение, чем электрический, детальный анализ факторов, определяю­щих передачу сигналов в химических синапсах, особенно важен для понимания раз­личных аспектов деятельности ЦНС в норме и патологии (а также действия на мозг- различных фармакологических веществ и токсинов, пластических функций нервной системы и т.д.). Поэтому необходимо детально рассмотреть механизмы функциониро­вания синапсов с химическим механизмом передачи, а именно высвобождение меди­атора пресинаптическими окончаниями, химическую природу медиаторов, молекулярную и ионную структуру их действия на постсинаптическую мембрану нейронов, лежащую в основе синаптического возбуждения и торможения. '

Наши рекомендации