Определение окисляемости природных вод

Окислительно-восстановительные процессы в природных водах представляют собой, главным образом, превращения органических соединений. Одним из непременных условий существования водных экосистем являются процессы разложения органических соединений, в результате которых идет окисление соединений до углекислого газа, воды и различных соединений азота, фосфора, серы. Пока имеется в воде свободный кислород, окисление органических соединений идет, как правило, до оксидов элементов в высшей степени окисления, в идеале до СО2 и Н2О.

В анаэробных условиях (при недостатке или отсутствии кислорода в воде) окислительно-восстановительные процессы идут несколько иначе. Микроорганизмы для окисления органических соединений используют кислород нитратов, сульфатов и других соединений. В виде общей схемы процесс анаэробного окисления можно представить так:

COPГ + 2NO3 + 2H+àN2 + 2,5CO2 + H2O

Или так:

COPГ + SO42– + 2H2Oà H2S + 2HCO3

Разложение органических веществ в анаэробных условиях осуществляется путем брожения с образованием продуктов неполного окисления (спиртов и альдегидов). Примером могут служить следующие реакции:

C6H12O6 à 2CO2 + 2C2H5OH – спиртовое брожение

C6H12O6 à CH3–CH2–CH2–COOH +2СO2+2H2 – маслянокислое

брожение

CH3–CH2–OH à CH3–COOH+ H2 – метановое

CH3–COOH à CO2 + CH4 Определение окисляемости природных вод - student2.ru брожение

4H2 +СO2 à 2Н2O + CH4

Реальные процессы окисления органических соединений еще сложнее и разнообразнее.

Одной из характеристик природных вод может служить их окисляемость – общее количество содержащихся в воде восстановителей (чаще органических соединений), реагирующих с сильными окислителями, например, бихроматом, перманганатом и др.

Результаты определения окисляемости выражают в миллиграммах кислорода на 1 л воды (мг О/л). По этому показателю можно предположить, какое количество органических веществ содержится в исследуемой воде. Изменение степени окисления органических веществ в пробе, а значит и их содержание в воде, можно контролировать, отбирая пробы воды и определяя величину их окисляемости через различные промежутки времени.

Наиболее полное окисление соединений достигается при использовании бихромата калия, поэтому бихроматную окисляемость нередко называют "химическим потреблением кислорода" (ХПК). Это основной метод определения окисляемости. Большинство соединений окисляется при этом на 90 – 100 % с образованием диоксида углерода и воды, азот выделяется в виде газа.

Есть, однако, небольшое число соединений (бензол, толуол, пиридин и др.), которые совсем не окисляются бихроматом калия даже в присутствии катализатора.

Нормативы ХПК воды водоемов хозяйственно-питьевого водопользования составляют 15 мг О/л, культурно-бытового – 30 мг О/л.

Однако представленный способ определения окисляемости природных вод недостаточно точно позволяет смоделировать процессы в водоемах. Гораздо ближе отражает естественные процессы определение количества кислорода (мг), необходимого для окисления находящихся в 1 л воды органических веществ в аэробных условиях при 20оС в результате протекающих в воде биохимических процессов за определенный период времени (3, 5, 10, 20 суток и т.д.). Такой показатель называют БПК – биохимическое потребление кислорода. Наиболее распространен метод установления БПК по разности содержания растворенного кислорода до и после инкубации пробы воды, с внесенными в нее микроорганизмами, при стандартных условиях (200С, аэробные условия, без доступа воздуха и света).

Установлено, что при загрязнении водоемов преимущественно хозяйственно-бытовыми сточными водами с относительно постоянным составом и свойствами БПК5 (пятисуточное) составляет 70 % БПК полного.

Развитие промышленности обусловило увеличение сброса сточных вод, содержащих загрязняющие вещества с самыми разнообразными свойствами. Среди них могут быть как тормозящие процессы БПК, так и увеличивающие потребление кислорода. В зависимости от категории водоема регламентируется величина полного БПК: не более 6 мг/л кислорода для водоемов хозяйственно-бытового и культурного водопользования и не более 3 мг/л кислорода для водоемов хозяйственно-питьевого водопользования.

Для водоемов с хорошо сбалансированной экосистемой показатели ХПК и БПК отличаются незначительно (на величину органических веществ, идущих на построение клеток тела микроорганизмов). Для водоемов, загрязненных химическими и незначительно биологическими отходами антропогенного характера, величина бихроматной окисляемости (ХПК) гораздо выше, чем БПК.

Цель работы: познакомиться со способами определения суммарного количества органических загрязнителей в воде через определение окисляемости природных вод.

Реактивы: серная кислота плотностью 1,84 г/см3; N – фенилантраниловая кислота (0,25 г кислоты растворяют в 12 мл 0,1 н. раствора NaOH и разбавляют водой до 250 мл); бихромат калия 0,25 н. стандартный раствор; соль Мора 0,25 н. раствор (титр раствора соли Мора предварительно устанавливают по стандартному раствору бихромата калия.

Порядок выполнения работы

В пробу воды (в количестве 5 мл) ввести 2,5 мл 0,25 н. раствора бихромата калия и при перемешивании концентрированную серную кислоту в количестве 15 мл. При этом температура раствора поднимается выше 100°С. Через 2 мин к остывшей до комнатной температуры смеси прилить 100 мл дистиллированной воды и оттитровать избыток бихромата. Для этого ввести 10–15 капель раствора N – фенилантраниловой кислоты и с помощью бюретки добавлять в смесь раствор соли Мора, взаимодействующий с непрореагировавшим количеством бихромата калия.

Провести холостой опыт. Для этого с использованием 5 мл дистиллированной воды проводят те же операции, что и с анализируемой пробой природной воды.

Величину ХПК, мг О/л определяют по формуле

Определение окисляемости природных вод - student2.ru ,

где a – объем раствора соли Мора, пошедшего на титрование холостой пробы, мл; b – объем раствора соли Мора, пошедшего на титрование анализируемой пробы, мл; N – нормальность соли Мора; V – объем анализируемой пробы, мл; 8 – эквивалент кислорода.

Требования к отчету

В отчете приводят название и цель работы, результаты расчета химического потребления кислорода бихроматным методом; делают вывод о содержании органических загрязняющих веществ в анализируемой воде.

Лабораторная работа № 6

Наши рекомендации