Параграф 7. висцеральная сенсорная система
Большая роль в жизнедеятельности человека принадлежит висцеральной, или интерорецептивной, сенсорной системе. Она воспринимает изменения внутренней среды организма и поставляет центральной и вегетативной нервной системе информацию, необходимую для рефлекторной регуляции работы всех внутренних органов.
Интерорецепторы
Механорецепторы реагируют на изменение давления в полых органах и сосудах, их растяжение и сжатие. Хеморецепторы сообщают ЦНС об изменениях химизма органов и тканей. Их роль особенно велика в рефлекторном регулировании и поддержании постоянства внутренней среды организма.
Возбуждение хеморецепторов головного мозга может быть вызвано высвобождением из его элементов гистамина, индольных соединений, изменением содержания в желудочках мозга двуокиси углерода и другими факторами. Рецепторы каротидных клубочков реагируют на недостаток в крови кислорода, на снижение величины рН и повышение напряжения углекислоты. Терморецепторы внутренних органов участвуют в терморегуляции.
Проводящие пути и центры висцеральной сенсорной системы
Проводящие пути и центры висцеральной сенсорной системы представлены, в основном, блуждающим, чревным и тазовым нервами. Блуждающий нерв передает афферентные сигналы в ЦНС по тонким волокнам с малой скоростью от практически всех органов грудной и брюшной полости, чревный нерв – от желудка, брыжейки и тонкого кишечника, а тазовый – от органов малого таза. В составе этих нервов имеются как быстро-, так и медленнопроводящие волокна. Импульсы от многих интероцепторов проходят по задним и вентролатеральным столбам спинного мозга.
Интероцептивная информация поступает в ряд структур ствола мозга и подкорковые образования. Следует отметить, что важную роль играет гипоталамус, где имеются проекции чревного и блуждающего нервов. Высшим отделом висцеральной сенсорной системы является кора больших полушарий.
Висцеральные ощущения и восприятие
Возбуждение некоторых интероцепторов приводит к возникновению четких локализованных ощущений, т.е. к восприятию (например, при растяжении стенок мочевого пузыря или прямой кишки). В то же время возбуждение интероцепторов сердца и сосудов, печени, почек, селезенки, матки и ряда других органов не вызывает ясных осознаваемых ощущений. Возникающие в этих случаях сигналы часто имеют подпороговый характер. И.М.Сеченов указывал на «темный, смутный» характер этих ощущений.
Изменение состояния внутренних органов, регистрируемое висцеральной системой (даже если оно не осознается человеком), оказывает значительное влияние на его настроение, самочувствие и поведение. Это связано с тем, что интероцептивные сигналы приходят в кору мозга, изменяя активность многих ее отделов. Особенно важна роль интероцептивных условных рефлексов в формировании сложнейших цепных реакций, лежащих в основе пищевого и полового поведения.
ОСНОВНЫЕ КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ СЕНСОРНЫХ СИСТЕМ ЧЕЛОВЕКА
Ближняя точка ясного видения 10 см
Диаметр желтого пятна сетчатки около 0,5 мм (1,5–2 угловых градуса)
Сила аккомодации около 10 диоптрий (D)
Диапазон изменения диаметра зрачка при изменении освещенности 1,8–7,5 мм
Время «инерции зрения» 0,03–0,1 с
Дифференциальный порог световой чувствительности 1–1,5%
Диапазон длин волн видимого света 400–700 нм
Нормальная острота центрального зрения 1 угловая минута
Поле зрения для бесцветных предметов 150 угловых градусов по горизонтали и 130 угловых градусов по вертикали
Частота слышимых звуковых колебаний 16–20000 Гц (10-11 октав)
Максимальный уровень громкости 130–140 дБ над порогом слышимости
Дифференциальный порог по частоте до 1–2 Гц
Дифференциальный порог по громкости до 0,59 дБ
Дифференциальный порог по направлению на источник звука до 1 углового градуса
Пороговое ускорение прямолинейного движения 2 cм/c²
Порог различения наклона головы вбок 1 угловой градус
Пороговое давление на кожу от 50 мг до 10 г
Пространственное различение на кожной поверхности от 0,5 до 60 мм
Дифференциальная чувствительность терморецепторов кожи до 0,20 С
Порог различения силы запаха 30–60% от исходной концентрации
Лекция 3. Психофизиология познавательных процессов
Параграф.1. ВОСПРИЯТИЕ, КОДИРОВАНИЕ И ПЕРЕРАБОТКА ИНФОРМАЦИИ В НЕРВНОЙ СИСТЕМЕ
Восприятие
Одной из важных составных частей психофизиологии является работа сенсорных систем, с помощью которых мозг выделяет элементы окружающей среды из сложной их совокупности. Сенсорные системы функционируют, используя и прямые, и обратные связи, т.е. как системы самоорганизации и управления. Функции сенсорной системы – это: 1— обнаружение и различение сигналов, 2 — передача, трансформация сигнала и кодирование, 3 — детектирование признаков сигнала и опознание образа.
Обнаружение сигналов и их первичное различение происходит уже на рецепторном уровне, передача, преобразование и кодирование – на всех уровнях сенсорной системы, детекция —и на периферии системы и в центре, опознание образа — на нейронах высших уровней системы. Преобразование информации в сенсорной системе зависит не только от ее свойств и функционального состояния, но и от следов в памяти, и от иных воздействий,
воспринимаемых мозгом сиюминутно. По старым представлениям Гельмгольца, несовершенство наших органов чувств обеспечивает неточное отражение объектов внешнего мира в нашем сознании и поэтому можно говорить лишь о символическом отображении нашим сознанием реального мира (“теория иероглифов”). Действительно, кодирование признаков сигнала в нервной системе происходит “иероглифически” – импульсными посылками, но последующая расшифровка информации при декодировании возвращает ей, по-видимому, реальное, не символическое значение. Вопрос в том, как это достигается. И если процессы кодирования более или менее ясны, то с пониманием декодирования дело обстоит гораздо сложнее.
Пространственно-временная структура объекта кодируется в мозге в форме определенной нервной модели, изоморфной внешнему воздействию. Субъективный же образ возникает на базе нервных моделей при декодировании информации, но как происходит декодирование, пока совершенно неясно, на этот счет пока даже нет сколько-нибудь подходящих гипотез.
Нейронные коды и их виды
Нейронное кодирование информации – это представление ее в каком-либо условном виде, который может быть распознан другими нейронами. Наиболее распространен двоичный код – наличие или отсутствие импульса (Сомьен). По характеру статистической структуры информации, ее оказалось возможным оценить количественно (Шеннон). Эта оценка позволяет судить о степени упорядоченности импульсных потоков, содержащих информацию. Благодаря наличию различных способов кодирования, разные по форме “нейронные сообщения” могут содержать одинаковую информацию и наоборот –одинаковые нейронные ответы могут быть связаны с восприятием и переработкой информационно различных сигналов.
Информация, извлекаемая из сенсорных сигналов, после трансформации на рецепторном уровне передается в центральные нервные структуры, вплоть до коры больших полушарий, неоднократно перерабатываясь и преобразуясь из одной сигнальной формы в
другую. Таким образом, передача информации от одного нейрона к другому – от “корреспондента” к “адресату”– производится с помощью специфических нейронных
кодов. Перкел и Буллок предлагают рассматривать три основные группы кодов, или, вернее, кандидатов в коды, как они их называли. Дело в том, что кодовой мы можем предположительно считать такую реакцию, которая повторяется всегда в ответ на определенный сигнал. Но такая реакция будет являться кодом (или содержать кодовые
элементы) на уровне нейрона-корреспондента. А прочтет ли нейрон адресат этот код, неизвестно. Поэтому более строго следует говорить о “кандидатах в коды”, а не о самих
кодах, тем более, что на синапсах всегда происходит трансформация электрических импульсов в медиаторные реакции, и насколько однозначно происходят подобные преобразования, судить трудно. Однако, для краткости мы в дальнейшем будем чаще
употреблять слово “код”, имея в виду, безусловно, “кандидат в коды”.
Итак, три основные группы кодов: 1 неимпульсные факторы, 2 импульсные
сигналы в одиночных нейронах, 3 ансамблевая активность (или “кодирование по ансамблю”). В каждой из этих трех групп выделяются свои “кандидаты в коды”, с помощью которых возможно однозначно передать от “корреспондента” к “адресату” сведения о действующем сигнале, о его модальности и других характеристиках.
Для неимпульсных кодов это внутриклеточные и межклеточные факторы, которые в свою очередь можно подразделить на более мелкие виды кодов. Среди внутриклеточных факторов следует отметить амплитудные характеристики рецепторных и синаптических потенциалов, амплитудные и пространственные характеристики изменений синаптической проводимости, пространственное и временное распределение характеристик мембранного потенциала, градуальные потенциалы в аксонных терминалях. Среди межклеточных факторов основные – это освобождение медиаторов и ионов калия, нейросекреция и электрические взаимодействия нейронов.
Импульсные коды также представлены различными “кандидатами в коды”, в частности, кодами пространственными и временными. Пространственные (или позиционные) коды предусматривают наличие постоянных “корреспондентов” и “адресатов” и реализуются по принципу: “стимул-место”. Это, по Буллоку, код “мечеными линиями” или “мечеными аксонами”, т.е. представление информации номером канала. Коды же, основанные на временных параметрах импульсных ответов, включают в себя многочисленные “кандидаты в коды” и нередко представляют собой составной код, использующий несколько простых кодов для своей реализации.
Особый интерес представляет нейроголографический подход к вопросам кодирования сенсорной информации в нервной системе (Вестлейк, Прибрам). При этом роль опорной волны может играть импульсация от низкопороговых коротколатентных нейронов с константной реакцией (“нейроны-таймеры”, по Шевелеву, или синхронизаторы, или реперные нейроны), роль сигнальной волны — импульсация от нейронов, более высокопороговых и длиннолатентных, реакция которых зависит от силы и характера стимуляции (“нейроны-сканеры”, по Шевелеву), волновой фронт может создаваться когерентными импульсными потоками, а разность фаз возникать за счет разностей латентных периодов реакций (Алейников и др.).
В большинстве случаев в центральной нервной системе используется пространственно-временное кодирование, когда информация о признаках сигнала передается канально и уточняется различными модификациями временных кодов (Алейникова).
Поскольку любая функция в целостном организме (тем более на психическом уровне) осуществляется не отдельными нейронами, а их группами, конгломератами, ансамблями
(Коган, Чораян), то, естественно, наиболее актуальным является кодирование на уровне не
отдельных нейронов, а их группировок, т.е. “кодирование по ансамблю” (Перкел, Буллок).
Такая ансамблевая активность может рассматриваться, с одной стороны, как представление информации пространственным множеством элементов, т.е. топографическим распределением активированных нейронов – как сложный позиционный код. С другой стороны, она может рассматриваться на базе пространственных отношений между различными каналами с учетом распределения латентных периодов реакций, распределения фазовых отношений, вероятности разряда в ответ на стимул (“вероятностное кодирование”). Таким образом, кодирование по ансамблю может выступать как сложный пространственно-временной код. И, наконец, ансамблевое кодирование позволяет представить информацию сложной формой многоклеточной активности, в которой различные временные и пространственные “кандидаты в коды” создают сложную мозаику взаимоотношений между нейронами и их группами на системном уровне, что и приводит в конечном счете к опознанию действующих сигналов, к принятию решения и к формированию ответной адекватной реакции. Этот сложный вид многоклеточной активности проявляется формой вызванных потенциалов и медленными изменениями электроэнцефалограммы.
Переработка информации
Процесс кодирования включает четыре основных момента: 1 референт, т.е. те параметры сигналов, которые выделяются нейронами, 2трансформация, т.е. перевод в нервных структурах сигналов одного вида в качественно иные (так называемое перекодирование), 3 передача информации по каналам связи, представленным либо отдельными нейронами, либо их объединениями, 4 опознание поступающей информации (т.е. декодирование).
Референтом для рецепторных нейронов служат физические параметры сигналов, а для центральных и эффекторных, видимо, статистические параметры потоков импульсов (либо неимпульсные коды). Из физических параметров сигналов выделяются силовые, временные и пространственные характеристики (интенсивность, скорость, ускорение, величина, форма, локализация, направление движения и т.д.). В качестве информативных статистических показателей могут выступать средняя частота импульсации, средний межимпульсный интервал, дисперсия, коэффициент вариации межимпульсных интервалов, симметрия моды, картина узора межимпульсных интервалов (паттерн), разность латентных периодов импульсов и т.д. При этом локализация раздражения кодируется, как правило, позиционно “мечеными аксонами” (Перкел и Буллок), и сведения о локализации могут передаваться по принципу “точка в точку” (Гейз). Кроме поточечной передачи информации (поточечное описание), характерной для концентрических рецептивных полей, возможно и выделение отдельных признаков (детекция признаков), осуществляемое специальными нейронами-детекторами (выделяющими, например, в зрительной системе углы, линии, границы, цвет, параметры движения и т.д., в слуховой – высоту тона, громкость, тембр, параметры движения звука и т.д. и т.п.).
Что касается информации об интенсивности воздействия, то для большинства сенсорных систем используется в основном частотный код, хотя в ряде случаев подключаются и другие виды временных кодов. В слуховой же системе частотный код работает в основном для передачи информации о высоте тона (для низкочастотных звуков), а интенсивность звука кодируется в рецепторной системе главным образом пространственно – за счет разнопороговости наружных и внутренних кортиевых клеток. В ряде случаев информация об интенсивности раздражения кодируется числом потенциалов действия без изменения их частоты, например, в электрорецепторах латеральной линии рыб (Хагивара, Буллок). Такое числовое кодирование показано Глезером и другими для информации о яркости света. Своеобразные способы кодирования описаны для двух типов электрорецепторов рыб (Перкел и Буллок): одна группа рецепторов кодирует интенсивность раздражения длительностью латентного периода (так называемые Т-рецепторы), другая - вероятностью разряда (Р-рецепторы).
Работами ряда авторов (Леттвин и др., Китинг и Гейз) показана роль “детекторных” нейронов в кодировании информации на периферии анализаторных систем. Понятием “детектор”, введенным в нейрофизиологию Хартлайном, обозначаются нервные структуры, ответственные завыделение и анализ определенных параметров объекта. Это нейроны, кодирующие адресно, по принципу “стимул-место”, информацию о форме объекта, его размере, ориентации, скорости движения, направления движения и т.д., хотя наряду с детекторными системами, есть и системы, “вычисляющие” свойства параметров сигналов (скорость, направление движения, размер, ориентацию и т.д.). При этом детекторные нейроны, в которых происходит свертка информации, не столько дают кодовое описание образа, сколько являются пусковым механизмом для вызова соответствующей реакции.
И на периферии, и в центре работают обе эти системы, так что в способах кодирования предусмотрено дублирование, позволяющее одной системе кодов скомпенсировать возможные “промахи” другой системы.
Весьма важным моментом в процессе передачи информации является трансформация сообщений в нервной системе, т.е. их перекодирование.Эти процессы имеют место и в рецепторных нейронах, и в центральных. Это, прежде всего, трансформация энергии внешнего сигнала в энергию рецепторного (генераторного) потенциала, а затем – в энергию нейрохимических реакций на синапсах, в результате чего возникают градуальные
постсинаптические потенциалы, приводящие к генерации нервного импульса. Перекодирование сообщений в нервной системе не исчерпывается трансформацией одного вида энергии в другой. Как перекодирование сигналов можно рассматривать перестройку импульсных кодов, возникающую практически при каждом синаптическом переключении.
Конечно, само синаптическое переключение уже предусматривает трансформацию электрической энергии нервного импульса в химическую, а затем опять в электрическую. Но речь может идти и о перекодировании иного плана, например, о перестройке паттерна, либо о трансформации частотного кода в числовой и т.д., а также о переходе от временного кодирования на периферии к пространственному в центрах.
Таким образом, нейрон как бы “считывает”информацию, приходящую к нему по разным каналам связи, и представляет ее в виде своего специфического кода, доступного для дальнейшего “считывания” теми нейронами, куда эта информация будет доставлена. В качестве таких приносящих каналов связи могут использоваться как отдельные нейроны
(волокна), так и их объединения. Эти каналы связи могут служить как для передачи адресных кодов (“меченые аксоны”), так и для передачи информации, зашифрованной любым из временных кодов. В случае передачи временного кода важно, чтобы при этом не произошло искажения в информативной части кода. В случае же работы канала связи для передачи адресного кода достаточно наличия сигнала в путях, достигающих адресного нейрона. Характерное (специфичное для разной информации) распределение импульсов в путях, создающее определеннуюпространственно-временную мозаичность возбуждения нейрональных структур, делает возможным “кодирование по ансамблю”.
Фактически, при любом сенсорном воздействии можно обнаружить различные комбинации способов кодирования. Безусловно, при действии раздражителя, запускающего реакцию не одного входного нейрона, а набора их, возникает “кодирование по ансамблю”, в основе которого лежат позиционные (адресные) коды – “мечеными линиями” и коды разностью латентных периодов отдельных импульсов (или набора импульсов). Отдельные же нейроны получают информацию в виде кодов адресных (по принципу “стимул-место”), частотных, числовых, разностью латентных периодов и т.д.