И разностью потенциалов
Поскольку мы ввели для характеристики электрического поля две величины: напряженность поля и разность потенциалов, то нам нужно выяснить взаимосвязь между ними, чтобы, зная одну из характеристик поля, всегда можно было бы устанавливать и вторую.
Для установления этой взаимосвязи поступим следующим образом. Выберем в пространстве две близко расположенные
|
нахождения точек 1 и 2 охарактеризуем вектором Е.
Подсчитаем теперь работу по переносу некоторого заряда из точки 1 в точку 2. Это можно сделать двумя способами: с использованием разности потенциалов и с использованием напряженности поля. Итак, работа по переносу заряда из 1 в 2 может быть записана с учетом (13)
(16) С другой стороны
(17) Приравниваем правые части равенств (16) и (17) и получаем
(18) Формула (18) описывает взаимосвязь двух характеристик поля. Используя ее можно, зная закон изменения потенциала в каком-то направлении, найти проекцию Е на это направление. Используя (18), можно решать и обратную задачу.
(19) По известному закону изменения Е в пространстве можно находить разности потенциалов между точками поля. При этом в (19) интегрирование можно вести по любой линии, соединяющей точки 1 и 2. Из соотношения (18) можно увидеть, в каких единицах измеряется напряженность электрического поля. В СИ разность потенциалов измеряется в вольтах, расстояние – в метрах, а напряженность поля, в вольтах, деленных на метр (В/м). Посмотрим теперь, как, зная распределение потенциала электрического поля в пространстве, найти не одну проекцию напряженности поля, а весь вектор Е. Проекции Е на координатные оси декартовой системы координат по аналогии с (18) имеют вид
(20) а сам вектор
(21) i, j, k –единичные векторы вдоль соответствующих координатных осей.
Математическая операция, проделанная с потенциалом j в правой части равенства (21) представляет собой некоторый вектор, который математики называют градиентом скалярной величины, стоящей под знаком этой математической операции, в нашем случае градиентом потенциала. Градиент сокращенно обозначается grad, поэтому равенство (21) с использованием понятия градиента, может быть записано
. (22) С точки зрения математики эта функция является вектором, который определяет изменение потенциала j в окрестности некоторой точки. Направление вектора grad j в этой точке является направлением, в которой следует двигаться от этой точки для наиболее быстрого увеличения потенциала. Знак минус в (22) показывает, что напряженность поля направлена из области большего потенциала в область меньшего потенциала.
Введение потенциала как характеристики электрического поля позволяет предложить еще один способ графического изображения полей. Делать это можно с помощью, так называемых, линий (или поверхностей) равного потенциала или эквипотенциальных поверхностей. Если проводить эквипотенциальные линии с постоянной разностью потенциалов, то по густоте их проведения можно судить о быстроте изменения потенциала в пространстве. Возникает вопрос о взаимной ориентации эквипотенциальной поверхности и линий напряженности. Предположим, что мы пронесем по некоторой эквипотенциальной поверхности по замкнутой траектории заряд q. Потенциалы конечной и начальной точек переноса совпадают и разность потенциала между ними равна нулю. Следовательно, работа, которую совершает поле при таком переносе, тоже нулевая. С точки зрения напряженности поля работа переноса равна нулю, если в процессе переноса заряд двигается перпендикулярно к напряженности поля. Следовательно, эквипотенциальные поверхности располагаются перпендикулярно к силовым линиям поля. Так для точечного заряда эквипотенциальные поверхности – сферические поверхности с центром на заряде (рис. 8). Пунктиром на рисунке проведены силовые линии.
|