Интерпретация и область применения метода КС.
При токовом каротаже сила тока, стекающего с помещенного в скважину питающего электрода, зависит от удельного сопротивления окружающих пород. Если питающий электрод расположен против хорошо проводящего пласта, то его сопротивление заземления уменьшается, а сила тока увеличивается. Вблизи высокоомных пород сила тока будет уменьшаться. На диаграммах хорошо выделяются лишь пласты с резко отличающимися от вмещающих пород свойствами, например, руды.
Интерпретация данных КС начинается с визуального выделения на диаграммах КС аномалий, по которым определяют глубину залегания слоев с разными удельными электрическими сопротивлениями. Форма и характерные особенности кривых КС определяются не только сопротивлением и мощностью слоев, но и диаметром скважины, минерализацией бурового раствора, радиусом его проникновения в породу (последний зависит от пористости пород и разности давлений жидкости в пласте и стволе скважины), а также типом и размерами зонда, с помощью которого получена диаграмма.
В теории метода КС рассчитаны формулы и построены графики кажущихся сопротивлений против слоев разной мощности и сопротивления для любых зондов. Кривые КС, полученные потенциал-зондом, отличаются симметричной формой. Максимумами выделяются центры слоя с повышенными сопротивлениями, а минимумами - с пониженными. Подошвенный градиент-зонд четким максимумом на кривой КС отбивает подошву пласта повышенного и кровлю пласта пониженного сопротивления, а кровельный градиент-зонд максимумом КС выявляет кровлю пласта повышенного и подошву пласта пониженного сопротивления.
Таким образом, с помощью градиент-зонда легко выявить кровлю или подошву пласта, но трудно определить его мощность и местоположение середины. По графикам КС двух зондов - кровельного и подошвенного - определяются достаточно точно как положение, так и мощность пласта.
Пласты малой по сравнению с длиной зонда мощностью как высокого, так и низкого сопротивления отмечаются трудно расшифровываемыми аномалиями. По значениям КС стандартного зонда, а также в результате интерпретации кривых БКЗ можно получить истинные значения сопротивлений окружающих пород и оценить радиус проникновения бурового раствора. Чем больше радиус проникновения бурового раствора, тем больше пористость пород и лучше их коллекторные свойства.
Второй этап интерпретации - корреляция похожих аномалий по кривым КС соседних скважин. Сначала выделяют четкие, характерные, повсеместно наблюдаемые в изучаемом районе аномалии, приуроченные к какому-нибудь стратиграфическому горизонту большой мощности и выдержанного простирания. Такие аномалии называются реперами. Затем выделяют промежуточные горизонты и строят геолого-геофизические разрезы.
При исследовании пород-коллекторовна показания микрозондов оказывает влияние удельное сопротивление части пласта, измененной проникновением фильтрата бурового раствора, а также удельное сопротивление и толщина глинистой корки. Поэтому по данным микрозондов трудно получить представление о характере насыщения коллектора (нефтью, газом или водой).
Обычно применяют микрозонды двух размеров: градиент-микрозонд А0,025М10,025М2 (RИССЛ = двойной размер зонда), потенциал-микрозонд А0,05М (RИССЛ = размер зонда). Более полная информация получается, если исследования проводятся одновременно двумя микрозондами. Современная аппаратура на многожильном кабеле позволяет выполнить это условие.
По данным микрозондов хорошо выделяются породы-коллекторы, имеющие на своей поверхности глинистую корку. Однако глинистая корка одновременно с этим отрицательно сказывается на результатах количественных определений удельного сопротивления полностью промытой части коллектора. Для преодоления этой трудности применяют фокусированный микрозонд (зонд бокового микрокаротажа).
Рис.7(http://pandia.ru/text/78/413/images/image071_5.jpg): схема расположения электродов на измерительных башмаках бокового микрозонда. а – четырёхэлектродный, б – двухэлектродный. 1 – изоляция, 2 – металл.
Электроды этого зонда также смонтированы на прижимном измерительном башмаке микрозонда и представлены центральным токовым Ао и кольцевым или рамочными экранными Аэ и управляющими МN электродами. По принципу работы эти зонды очень похожи на семиэлектродный и трехэлектродный зонды в методе экранированного заземления (бокового каротажа). В отечественных приборах чаще используется принцип двухэлектродного зонда.
Фокусированный пучок тока, вытекающий из центрального электрода А0 зонда бокового микрокаротажа, пересекает глинистую корку по кратчайшему пути и тем самым уменьшает ее влияние. Удельное электрическое сопротивление промытой фильтратом раствора зоны коллектора удается измерить точнее.
Список литературы
· https://ru.wikipedia.org/wiki/Каротаж
· http://www.studfiles.ru/preview/2183056/page:4/
· http://pandia.ru/text/78/413/56828-3.php
· http://neosee.ru/90544
· Косков, В. Н.К71 Геофизические исследования скважин и интерпретация данных ГИС: учеб. пособие / В. Н. Косков, Б. В. Косков. – Пермь: Изд-во Перм. гос. техн. ун-та, 2007. – 317 с. ISBN 978-5-88151-859-2
· Сковородников И. Г.Геофизическое исследование скважин: Курс лекций. – Екатеринбург: УГГГА, 2003. – 294 с.
· Меркулов В. П.М Геофизическое исследование скважин: учебное пособие / В.П. Меркулов. – Томск: Изд-во ТПУ, 2008. – 139 с.