Билет: Двойное лучепреломление
Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Это явление, в 1669 г. впервые обнаруженное датским ученым Э. Бартолином (162S-1698) для исландского шпата (разновидность кальцита СаСО3), объясняется особенностями распространения света в анизотропных средах и непосредственно вытекает из уравнений Максвелла. Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 1).
Рис. 1 рис. 2Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис. 2). Второй из этих лучей получил название необыкновенного (е), а первый - обыкновенного (о). В кристалле исландского шпата имеется единственное направление, вдоль которого двойное лучепреломление не наблюдается. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного луче преломления, называется оптической осью кристалла. В данном случае речь идет именно о направлении, а не о прямой линии, проходящей через какую-то точку кристалла. Любая прямая, проходящая параллельно данному направлению, является оптической осью кристалла. Кристаллы в зависимости от типа их симметрии бывают одноосные и двуосные, т. е. имеют одну или две оптические оси (к первым и относится исландский шпат). Исследования показывают, что вышедшие из кристалла лучи плоскополяризованы во взаимно перпендикулярных плоскостях. Плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (или главным сечением кристалла). Колебания светового вектора (вектора напряженности Е электрического поля) в обыкновенном луче происходят перпендикулярно главной плоскости, в необыкновенном - в главной плоскости (рис. 2). Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления. Очевидно, что при любом направлении обыкновенного луча колебания светового вектора перпендикулярны оптической оси кристалла, поэтому обыкновенный луч распространяется по всем направлениям с одинаковой скоростью и, следовательно, показатель преломления n0 для него есть вели чина постоянная. Для необыкновенного же луча угол между направлением колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с разными скоростями. Следовательно, показатель преломления пе необыкновенного луча является переменной величиной, зависящей от направления луча. Таким образом, обыкновенный луч подчиняется закону преломления (отсюда и название «обыкновенный»), а для необыкновенного луча этот закон не выполняется. После выхода из кристалла, если не принимать во внимание поляризацию во взаимно перпендикулярных плоскостях, эти два луча ничем друг от друга не отличаются. Как уже рассматривалось, обыкновенные лучи распространяются в кристалле по всем направлениям с одинаковой скоростью v0 = c/n0, а необыкновенные - с разной скоростью vв =с/nв. (в зависимости от угла между вектором Е и оптической осью). Для луча, распространяющегося вдоль оптической оси, n0 = ne, v0 = ve т. е. вдоль оптической оси существует только одна скорость распространения света. Различие в ve и vв для всех направлений, кроме направления оптической оси, и обусловливает явление двойного лучепреломления света в одноосных кристаллах. Допустим, что в точке S внутри одноосного кристалла находится точечный источник света. На рис. 3 показано распространение обыкновенного и необыкновенного лучей в кристалле (главная плоскость совпадает с плоскостью чертежа, ОО' - направление оптической оси). Волновой поверхностью обыкновенного луча (он распространяется с v0 = const) является сфера, необыкновенного луча (ve ¹ const) - эллипсоид вращения. Наибольшее расхождение волновых поверхностей обыкновенного и необыкновенного лучей наблюдается в направлении, перпендикулярном оптической оси. Эллипсоид и сфера касаются друг друга в точках их пересечения с оптической осью ОО', Если то ve < vо (nе > no), эллипсоид необыкновенного луча вписан в сферу обыкновенного луча (эллипсоид скоростей вытянут относительно оптической оси) и одноосный кристалл называется положительным (рис. 279, а). Если ve > v0 (ne < n0), то эллипсоид описан вокруг сферы (эллипсоид скоростей растянут в направлении, перпендикулярном оптической оси) и одноосный кристалл называется отрицательным (рис. 279, б). Рассмотренный выше исландский шпат относится к отрицательным кристаллам. В качестве примера построения обыкновенного и необыкновенного лучей рассмотрим преломление плоской волны на границе анизотропной среды, например положи тельной (рис. 4). Пусть свет падает нормально к преломляющей грани кристалла, а оптическая ось ОО' составляет с нею некоторый угол. С центрами в точках А и В по строим сферические волновые поверхности, соответствующие обыкновенному лучу, и эллипсоидальные - необыкновенному лучу. В точке, лежащей на ОО', эти поверхности соприкасаются. Согласно принципу Гюйгенса, поверхность, касательная к сферам, будет фронтом (а-а) обыкновенной волны, поверхность, касательная к эллипсоидам, - фронтом (b-b) необыкновенной волны. Проведя к точкам касания прямые, получим направления распространения обыкновенного (о) и необыкновенного (е) лучей. Таким образом, в данном случае обыкновенный луч пойдет вдоль первоначального направления, необыкновенный же отклонится от первоначального направления.
16 билет: дисперсия светаДисперсией света называется зависимость показателя преломления л вещества от частоты v (длины волны l) света или зависимость фазовой скорости v световых волн от его частоты v. Дисперсия света представляется в виде зависимости Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Первые экспериментальные наблюдения дисперсии света принадлежат И. Ньютону (1672 г.). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п (рис. 1) под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j.
Рис. 1 Из рисунка следует, что
Предположим, что углы А и a1 малы, тогда углы a2, b1 и b2 будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому a1/b1 = n, b2/a2 = 1/n, а так как b1 + b2 = A, то a2 = b2n = n(A - b1) = n(A - a1/n) = nA - a1 , откуда Из этих выражений следует, что т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы. Из выражения вытекает, что угол отклонения лучей призмой зависит от величины n - 1, а n - функция длины волны, поэтому лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав. Рассмотрим различия в дифракционном и призматическом спектрах.
1. Дифракционная решетка разлагает падающий свет непосредственно по длинам волн (см. (180.3)), поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны. Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения длины волны света надо знать зависимость n = ¦(l) (185.1). 2. Составные цвета в дифракционном и призматическом спектрах располагаются различно. Из (180.3) следует, что в дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается (рис. 269). Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые. Величина называемая дисперсией вещества, показывает, как быстро изменяется показатель прело мления с длиной волны. Из рис. 2 следует, что показатель преломления для прозрачных веществ с уменьшением длины волны увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l.
Рис. 2Такая дисперсия называется нормальной. Как будет показано ниже, ход кривой n(l) - кривой дисперсии - вблизи линий и полос поглощения будет иным: n уменьшается с уменьшением l. Такой ход зависимости n от l называется аномальной дисперсией. На явлении нормальной дисперсии основано действие призменных спектрографов. Несмотря на их некоторые недостатки (например, необходимость градуировки, различная дисперсия в разных участках спектра) при определении спектрального состава света, призменные спектрографы находят широкое применение в спектральном анализе. Это объясняется тем, что изготовление хороших призм значительно проще, чем изготовление хороших дифракционных решеток. В призменных спектрографах также легче получить большую светосилу.
Билет 17: Электронная теория дисперсии светаИз макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды где e - диэлектрическая проницаемость среды, m - магнитная проницаемость. В оптической области спектра для всех веществ m » 1, поэтому (1) Из формулы (1) выявляются некоторые противоречия с опытом: величина n, являясь переменной, остается в то же время равной определенной постоянной - Öe. Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны. Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости e от частоты w световых волн. Диэлектрическая проницаемость вещества, по определению равна
где æ - диэлектрическая восприимчивость среды, e0 - электрическая постоянная, Р - мгновенное значение поляризованности. Следовательно,
(2) т. е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т. е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v » 1015 Гц). В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны - оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е - заряд электрона, х - смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0 то мгновенное значение поляризованности
(3) (4) Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты со, т. е. изменяющимся по гармоническому закону: E = E0coswt. Уравнение вынужденных колебаний электрона для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде (5)
где F0 = eE0 - амплитудное значение силы, действующей на электрон со стороны поля волны, - собственная частота колебаний электрона, m - масса электрона. Решив уравнение (5), найдем e = n2 в зависимости от констант атома (е, m, w0) и частоты w внешнего поля, т. е. решим задачу дисперсии. Решение уравнения (5) можно записать в виде
(6) (7)
в чем легко убедиться подстановкой. Подставляя (6) и (7) в (4), получим (8) Если в веществе имеются различные заряды eh совершающие вынужденные колебания с различными собственными частотами еа0|, то
где m1 - масса i-го заряда. Из выражений (8) и (9) вытекает, что показатель преломления л зависит от частоты w внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от w = 0 до w = w0n2 больше единицы и возрастает с увеличением w (нормальная дисперсия); при w = w0n2 = ± ¥; в области от w = w0 до w = ¥n2 меньше единицы и возрастает от - ¥ до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от w имеет вид, изображенный на рис. 1.
Рис. 1 Такое поведение n вблизи w0 - результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции л (со) вблизи too задается штриховой линией АВ. Область АВ - область аномальной дисперсии (n убывает при возрастании w), остальные участки зависимости n от w описывают нормальную дисперсию (n возрастает с возрастанием w). Российскому физику Д. С. Рождественскому (1876-1940) принадлежит классическая работа по изучению аномальной дисперсии в парах натрия. Он разработал интерференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависимость n от w, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.
Билет 18: поглащение света, закон БугераПоглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается. Поглощение света в веществе описывается законом Бугера*: (1)
где I0 и I - интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, a - коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х= 1/a интенсивность света I по сравнению с I0 уменьшается в е раз. Коэффициент поглощения зависит от длины волны l (или частоты w) и для различных веществ различен. Например, одноатомные газы и пары металлов (т. е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10-12 - 10-7 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения (примерно 10~10-10~7 м). Коэффициент поглощения для диэлектриков невелик (примерно 10-3 - 10-5 см-1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда а резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т. е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика. Коэффициент поглощения для металлов имеет большие значения (примерно 103 -105 см-1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света. На рис. 1 представлены типичная зависимость коэффициента поглощения a от длины волны света l и зависимость показателя преломления n от l в области полосы поглощения.
Рис. 1 Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с уменьшением l). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления. Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире. Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.