Энтропия. Второе начало термодинамики

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно Энтропия. Второе начало термодинамики - student2.ru . Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно

Энтропия. Второе начало термодинамики - student2.ru (1)

Из равенства нулю интеграла (1), взятого по замкнутому контуру, следует, что подынтегральное выражение Энтропия. Второе начало термодинамики - student2.ru есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

Энтропия. Второе начало термодинамики - student2.ru (2)

Функция состояния, дифференциалом которой является Энтропия. Второе начало термодинамики - student2.ru , называется энтропией и обозначается S.

Из формулы (1) следует, что для обратимых процессов изменение энтропии

Энтропия. Второе начало термодинамики - student2.ru (3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

Энтропия. Второе начало термодинамики - student2.ru (4)

Выражения (3) и (4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (3) и (4) можно представить в виде неравенства Клаузиуса

Энтропия. Второе начало термодинамики - student2.ru (5)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (2), изменение энтропии

Энтропия. Второе начало термодинамики - student2.ru Энтропия. Второе начало термодинамики - student2.ru (6)

где подынтегральное выражение и пределы интегрирования определяются через величины, характеризующие исследуемый процесс. Энтропия определяется с точностью до аддитивной постоянной. Значение постоянной, с которой определяется энтропия, не играет роли, так как физический смысл имеет не сама энтропия, а разность энтропии.

Исходя из выражения (6), найдем изменение энтропии в процессах идеального газа. Поскольку Энтропия. Второе начало термодинамики - student2.ru , Энтропия. Второе начало термодинамики - student2.ru , то

Энтропия. Второе начало термодинамики - student2.ru

Энтропия. Второе начало термодинамики - student2.ru

или

Энтропия. Второе начало термодинамики - student2.ru

Энтропия. Второе начало термодинамики - student2.ru (7)

т. е. изменение энтропии ΔSl→2 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода 1→2.

Так как для адиабатного процесса δQ = 0, то ΔS = 0 и, следовательно, S= const, т.е. адиабатный обратимый процесс протекает при постоянной энтропии. Поэтому его часто называют изоэнтропийным процессом.

Из формулы (7) следует, что при изотермическом процессе (Т1 = Т2)

Энтропия. Второе начало термодинамики - student2.ru

при изохорном процессе (V1= V2)

Энтропия. Второе начало термодинамики - student2.ru

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропии тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывают в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы — это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние [по определению, W ≥ 1, т.е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя ≤ 1!)].

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

Энтропия. Второе начало термодинамики - student2.ru (8)

где k — постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана (8) позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия — наиболее вероятного состояния системы — число микросостояний максимально, при этом максимальна и энтропия.

Так как реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии — принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным — до тех пор, пока вероятность состояния не станет максимальной.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить процессы, не противоречащие первому началу, в которых энергия сохраняется, а в природе они не происходят. Появление второго начала термодинамики связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики определяет направление протекания термодинамических процессов.

Используя понятие энтропии и неравенство Клаузиуса (см. § 3), второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана (8) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой прогресс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу:невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Первое и второе начала термодинамики дополняются третьим началом термодинамики, или теоремой Нернста — Планка: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю кельвин:

Энтропия. Второе начало термодинамики - student2.ru

Поскольку энтропия определяется с точностью до аддитивной постоянной, то эту постоянную удобно взять равной нулю. Отметим, однако, что это произвольное допущение, так как энтропия по своей сущности всегда определяется с точностью до аддитивной постоянной. Из теоремы Нернста — Планка следует, что теплоемкости Ср и CV при 0 К равны нулю.

Наши рекомендации