Тангенциальная составляющая ускорения 10 страница

Тангенциальная составляющая ускорения 10 страница - student2.ru

или

Тангенциальная составляющая ускорения 10 страница - student2.ru (51.1)

Уравнение (51.1) выражаетпервое начало термодинамики: теплота, сообщаемая систе­ме, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Выражение (51.1) в дифференциальной форме будет иметь вид

Тангенциальная составляющая ускорения 10 страница - student2.ru

или в более корректной форме

Тангенциальная составляющая ускорения 10 страница - student2.ru (51.2)

где dU — бесконечно малое изменение внутренней энергии системы, dA — элементар­ная работа, dQ — бесконечно малое количество теплоты. В этом выражении dU является полным дифференциалом, а dA и dQ таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (51.2).

Из формулы (51.1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвращается в первоначальное состояние, то измене­ние ее внутренней энергии DU=0. Тогда, согласно первому началу термодинамики,

Тангенциальная составляющая ускорения 10 страница - student2.ru

т. е. вечный двигатель первого рода — периодически действующий двигатель, который совершал бы бóльшую работу, чем сообщенная ему извне энергия, — невозможен (одна из формулировок первого начала термодинамики).

§ 52. Работа газа при изменении его объема

Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находя­щийся под поршнем в цилиндрическом сосуде (рис. 78). Если газ, расширяясь, пере­двигает поршень на бесконечно малое расстояние dl, то производит над ним работу

Тангенциальная составляющая ускорения 10 страница - student2.ru

где S — площадь поршня, Sdl=dV— изменение объема системы. Таким образом,

Тангенциальная составляющая ускорения 10 страница - student2.ru (52.1)

Полную работу А, совершаемую газом при изменении его объема от V1 до V2, найдем интегрированием формулы (52.1):

Тангенциальная составляющая ускорения 10 страница - student2.ru (52.2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (52.2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

Произведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах р, V. Пусть изменение давления газа при его расширении изображается кривой на рис. 79. При увеличении объема на dV соверша­емая газом работа равна pdV, т. е. определяется площадью полоски с основанием dV, заштрихованной на рисунке. Поэтому полная работа, совершаемая газом при расшире­нии от объема V1 до объема V2, определяется площадью, ограниченной осью абсцисс, кривой p=f(V) и прямыми V1 и V2.

Графически можно изображать только равновесные процессы — процессы, состо­ящие из последовательности равновесных состояний. Они протекают так, что измене­ние термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев неравновесностью реальных процессов можно пренебречь (чем медлен­нее процесс протекает, тем он ближе к равновесному). В дальнейшем рассматриваемые процессы будем считать равновесными.

§ 53. Теплоемкость

Удельная теплоемкость вещества — величина, равная количеству теплоты, необходи­мому для нагревания 1 кг вещества на 1 К:

Тангенциальная составляющая ускорения 10 страница - student2.ru

Единила удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг × К)).

Молярная теплоемкость—величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.1)

где n=m/М—количество вещества.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль × К)).

Удельная теплоемкость с связана с молярной Сm, соотношением

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.2)

где М — молярная масса вещества.

Различают теплоемкости при постоянном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается постоянным.

Тангенциальная составляющая ускорения 10 страница - student2.ru

Запишем выражение первого начала термодинамики (51.2) для 1 моль газа с учетом формул (52.1) и (53.1):

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.3)

Если газ нагревается при постоянном объеме, то работа внешних сил равна нулю (см. (52.1)) и сообщаемая газу извне теплота вдет только на увеличение его внутренней энергии:

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.4)

т. е. молярная теплоемкость газа при постоянном объеме СV равна изменению внут­ренней энергии 1 моль газа при повышении его температуры на 1 К. Согласно формуле (50.1), Тангенциальная составляющая ускорения 10 страница - student2.ru тогда

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.5)

Если газ нагревается при постоянном давлении, то выражение (53.3) можно запи­сать в виде

Тангенциальная составляющая ускорения 10 страница - student2.ru

Учитывая, что Тангенциальная составляющая ускорения 10 страница - student2.ru не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от p, ни от V, а определяется лишь температурой Т) и всегда равна СV (см. (53.4)), и дифференцируя уравнение Клапейрона — Менделеева pVm=RT (42.4) по T (p=const), получаем

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.6)

Выражение (53.6) называетсяуравнением Майера; оно показывает, что Ср всегда больше СV на величину молярной газовой постоянной. Это объясняется тем, что при нагрева­нии газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, таккак постоянство давления обеспечивается увеличением объема газа. Использовав (53.5), выражение (53.6) можно записать в виде

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.7)

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Сp к СV :

Тангенциальная составляющая ускорения 10 страница - student2.ru (53.8)

Из формул (53.5) и (53.7) следует, что молярные теплоемкости определяются лишь числом степеней свободы и не зависят от температуры. Это утверждение молекулярно-кинетической теории справедливо в довольно широком интервале температур лишь для одноатомных газов.Уже у двухатомных газов число степеней свободы, проявля­ющееся в теплоемкости, зависит от температуры. Молекула двухатомного газа облада­ет тремя поступательными, двумя вращательными и одной колебательной степенями свободы.

По закону равномерного распределения энергии по степеням свободы (см. § 50), для комнатных температур СV = 7/2 R. Из качественной экспериментальной зависимости молярной теплоемкости СV водорода (рис. 80) следует, что СV зависит от темпера­туры: при низкой температуре (»50 К) СV =3/2 R, при комнатной — CV = 5/2R (вместо расчетных 7/2R) и при очень высокой — Сv=7/2 R. Это можно объяснить, пред­положив, что при низких температурах наблюдается только поступательное движение молекул, при комнатных — добавляется их вращение, а при высоких — к этим двум видам движения добавляются еще колебания молекул.

Расхождение теории и эксперимента нетрудно объяснить. Дело в том, что при вычислении теплоемкости надо учитывать квантование энергии вращения и колебаний молекул (возможны не любые вращательные и колебательные энергии, а лишь опреде­ленный дискретный ряд значений энергий). Если энергия теплового движения недоста­точна, например, для возбуждения колебаний, то эти колебания не вносят своего вклада в теплоемкость (соответствующая степень свободы «замораживается» — к ней неприменим закон равнораспределения энергии). Этим объясняется, что теплоемкость моля двухатомного газа — водорода — при комнатной температуре равна 5/2 R вме­сто 7/2R. Аналогично можно объяснить уменьшение теплоемкости при низкой тем­пературе («замораживаются» вращательные степени свободы) и увеличение при высо­кой («возбуждаются» колебательные степени свободы).

§ 54. Применение первого начала термодинамики к изопроцессам

Среди равновесных процессов, происходящих с термодинамическими системами, выде­ляются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V=const). Диаграмма этого процесса(изохора)в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

Тангенциальная составляющая ускорения 10 страница - student2.ru

Как уже указывалось в § 53, из первого начала термодинамики (dQ=dU+dA)дляизохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:

Тангенциальная составляющая ускорения 10 страница - student2.ru

Согласно формуле (53.4),

Тангенциальная составляющая ускорения 10 страница - student2.ru

Тогда для произвольной массы газа получим

Тангенциальная составляющая ускорения 10 страница - student2.ru (54.1)

Тангенциальная составляющая ускорения 10 страница - student2.ru

Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа (см. (52.2)) при увеличения объема от V1 до V2 равна

Тангенциальная составляющая ускорения 10 страница - student2.ru (54.2)

и определяется площадью заштрихованного прямоугольника (рис. 82). Если испо­льзовать уравнение (42.5) Клапейрона — Менделеева для выбранных нами двух состояний, то

Тангенциальная составляющая ускорения 10 страница - student2.ru

откуда

Тангенциальная составляющая ускорения 10 страница - student2.ru

Тогда выражение (54.2) для работы изобарного расширения примет вид

Тангенциальная составляющая ускорения 10 страница - student2.ru (54.3)

Из этого выражения вытекает физический смысл молярной газовой постоянной R:если T2 —T1 =1 К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой т количества теплоты

Тангенциальная составляющая ускорения 10 страница - student2.ru

его внутренняя энергия возрастает на величину (согласно формуле (53.4))

Тангенциальная составляющая ускорения 10 страница - student2.ru

При этом газ совершит работу, определяемую выражением (54.3).

Изотермический процесс (T=const). Как уже указывалось § 41, изотермический процесс описывается законом Бойля—Мариотта:

Тангенциальная составляющая ускорения 10 страница - student2.ru

Тангенциальная составляющая ускорения 10 страница - student2.ru

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис. 60), расположенную на диаграмме тем выше, чем выше тем­пература, при которой происходит процесс.

Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа:

Тангенциальная составляющая ускорения 10 страница - student2.ru

Так как при Т=const внутренняя энергия идеального газа не изменяется:

Тангенциальная составляющая ускорения 10 страница - student2.ru

то из первого начала термодинамики (dQ=dU+dA) следует, что для изотермического процесса

Тангенциальная составляющая ускорения 10 страница - student2.ru

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:

Тангенциальная составляющая ускорения 10 страница - student2.ru (54.4)

Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Тангенциальная составляющая ускорения 10 страница - student2.ru

§ 55. Адиабатический процесс. Политропный процесс

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0)между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно счи­тать процесс распространения звука в среде, так как скорость распространения звуко­вой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического процесса следует, что

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.2)

Продифференцировав уравнение состояния для идеального газа Тангенциальная составляющая ускорения 10 страница - student2.ru получим

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.3)

Исключим из (55.2) и (55.3) температуру Т.

Тангенциальная составляющая ускорения 10 страница - student2.ru

Разделив переменные и учитывая, что СpV=g (см. (53.8)), найдем

Тангенциальная составляющая ускорения 10 страница - student2.ru

Интегрируя это уравнение в пределах от p1 до p2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

Тангенциальная составляющая ускорения 10 страница - student2.ru

Так как состояния 1 и 2 выбраны произвольно, то можно записать

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.4)

Полученное выражение естьуравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или p, Т исключим из (55.4) с помощью уравнения Клапейрона — Менделеева

Тангенциальная составляющая ускорения 10 страница - student2.ru

соответственно давление или объем:

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.5)

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.6)

Выражения (55.4) — (55.6) представляют собой уравнения адиабатического процес­са. В этих уравнениях безразмерная величина (см. (53.8) и (53.2))

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.7)

называетсяпоказателем адиабаты (иликоэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, g=1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, g=1,4. Значения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабата) в координатах р, V изображается гиперболой (рис. 83). На рисунке видно, что адиабата (pVg = const) более крута, чем изотерма (pV = const). Это объясняется тем, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем урав­нение (55.1) в виде

Тангенциальная составляющая ускорения 10 страница - student2.ru

Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьша­ется от T1 до T2 и работа расширения идеального газа

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.8)

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расширении можно преобразовать к виду

Тангенциальная составляющая ускорения 10 страница - student2.ru

где Тангенциальная составляющая ускорения 10 страница - student2.ru .

Работа, совершаемая газом при адиабатическом расширении 1—2 (определяется площадью, заштрихованной на рис. 83), меньше, чем при изотермическом. Это объяс­няется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны СV и Сp, в изотермическом процессе (dT=0) теплоемкость равна ±¥, в адиабатическом (dQ=0) теплоемкость равна нулю. Процесс, в котором теплоемкость остается постоянной, называется политропным.

Тангенциальная составляющая ускорения 10 страница - student2.ru

Исходя из первого начала термодинамики при условии постоянства теплоемкости (C=const) можно вывести уравнение политропы:

Тангенциальная составляющая ускорения 10 страница - student2.ru (55.9)

где п=(С—Сp)/(С—СV)—показатель политропы. Очевидно, что при С=0, n=g, из (55.9) получается уравнение адиабаты; при С = ¥, n = 1 — уравнение изотермы; при С=Сp, n=0 —уравнение изобары, при С=СV, n=±¥ — уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изоб­ражается замкнутой кривой (рис. 84). Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1—2) и сжатия (2—1) газа. Работа расширения (определяется площадью фигуры 1a2V2V11) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V1V22) отрицательна (dV<0). Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная работа A= Тангенциальная составляющая ускорения 10 страница - student2.ru >0 (цикл протекает по часовой стрелке), то он называется прямым (рис. 84, а), если за цикл совершается отрицательная работа A= Тангенциальная составляющая ускорения 10 страница - student2.ru <0 (цикл протекает против часовой стрелки), то он называется обратным (рис. 84, б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах — периодически действующих установках, в ко­торых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии газа равно нулю. Поэтому первое начало термодинамики (51.1) для кругового процесса

Тангенциальная составляющая ускорения 10 страница - student2.ru (56.1)

т. е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Однако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

Тангенциальная составляющая ускорения 10 страница - student2.ru

где Q1 — количество теплоты, полученное системой, Q2 — количество теплоты, отданное системой. Поэтому термический коэффициент полезного действия для кругового процесса

Тангенциальная составляющая ускорения 10 страница - student2.ru (56.2)

Тангенциальная составляющая ускорения 10 страница - student2.ru

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среда и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что се любое промежуточное состояние есть состояние термодинамического равновесия; для него «безразлично», идет процесс в прямом или обратном направлении. Реальные процессы сопровождают­ся диссипацией энергии (из-за трения, теплопроводности и т. д.), которая нами не обсуждается. Обратимые процессы — это идеализация реальных процессов. Их рассмот­рение важно по двум причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют мак­симальный термический коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно dQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.1)

Из равенства нулю интеграла (57.1), взятого по замкнутому контуру, следует, что подынтегральное выражение dQ/T есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.2)

Функция состояния, дифференциалом которой является dQ/T, называется энтропией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.4)

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде неравенства Клаузиуса

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (57.2), изменение энтропии

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.6)

где подынтегральное выражение и пределы интегрирования определяются через вели­чины, характеризующие исследуемый процесс. Формула (57.6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий.

Исходя из выражения (57.6), найдем изменение энтропии в процессах идеального газа. Taк как Тангенциальная составляющая ускорения 10 страница - student2.ru то

Тангенциальная составляющая ускорения 10 страница - student2.ru

или

Тангенциальная составляющая ускорения 10 страница - student2.ru (57.7)

т. е. изменение энтропии DS1®2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1®2.

Таккак для адиабатического процесса dQ = 0, то DS = 0 и, следовательно, S=const,т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называютизоэнтропийным процессом. Из формулы (57.7) следует, что при изотермическом процессе (T1= T2)

Тангенциальная составляющая ускорения 10 страница - student2.ru

при изохорном процессе (V1 = V2)

Тангенциальная составляющая ускорения 10 страница - student2.ru

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энт­ропий тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы — это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние (по определению, W³1, т. е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя £ 1!)).

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

Наши рекомендации