Двойное лучепреломление. Вращение плоскости поляризации
Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления,т. е. раздваивания каждого падающего на них светового пучка.
Если на толстый кристалл исландского шпата направить узкий, пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 1).
Рис. 1 Рис.2
Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис.2). Второй из этих лучей получил название необыкновенного(е), а первый — обыкновенного(о).
В кристалле исландского шпата имеется единственное направление, вдоль которого двойное лучепреломление не наблюдается. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называется оптической осью кристалла.В данном случае речь идет именно о направлении, а не о прямой линии, проходящей через какую-то точку кристалла. Любая прямая, проходящая параллельно данному направлению, является оптической осью кристалла. Кристаллы в зависимости от типа их симметрии бывают одноосныеи двуосные,т. е. имеют одну или две оптические оси (к первым и относится исландский шпат).
Плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью(или главным сечениемкристалла). Анализ поляризации света (например, с помощью турмалина или стеклянного зеркала) показывает, что вышедшие из кристалла лучи плоско поляризованы во взаимно перпендикулярных плоскостях: колебания светового вектора (вектора напряженности Е электрического поля) в обыкновенном луче происходят перпендикулярно главной плоскости, в необыкновенном — в главной плоскости (рис. 2). Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления.
В основе работы поляризационных приспособлений, служащих для получения поляризованного света, лежит явление двойного лучепреломления. Наиболее часто для этого применяются призмыи поляроиды.Призмы делятся на два класса:
1) призмы, дающие только плоскополяризованный луч (поляризационные призмы);
2) призмы, дающие два поляризованных во взаимно перпендикулярных плоскостях луча (двоякопреломляющие призмы).
Поляризационные призмы построены по принципу полного отражения одного из лучей (например, обыкновенного) от границы раздела, в то время как другой луч с другим показателем преломления проходит через эту границу. Типичным представителем поляризационных призм является призма Николя(шотландский ученый), называемая часто николем.
Рис. 3
Призма Николя (рис.3) представляет собой двойную призму из исландского шпата, склеенную вдоль линии АВ канадским бальзамом с n =1,55. Оптическая ось 00' призмы составляет с входной гранью угол 48°. На передней грани призмы естественный луч, параллельный ребру СВ, раздваивается на два луча: обыкновенный (nо= 1,66) и необыкновенный (nе=1,51). При соответствующем подборе угла падения, равного или большего предельного, обыкновенный луч испытывает полное отражение (канадский бальзам для него является средой оптически менее плотной), а затем поглощается зачерненной боковой поверхностью СВ. Необыкновенный луч выходит из кристалла параллельно падающему лучу, незначительно смещенному относительно него (ввиду преломления на наклонных гранях АС и BD).
Двоякопреломляющие кристаллы обладают свойством дихроизма,т. е. различного поглощения света в зависимости от ориентации электрического вектора световой волны, и называются дихроичными кристаллами.Примером сильно дихроичного кристалла является турмалин, в котором из-за сильного селективного поглощения обыкновенного луча уже при толщине, пластинки 1 мм из нее выходит только необыкновенный луч. Такое различие в поглощении, зависящее, кроме того, от длины волны, приводит к тому, что при освещении дихроичного кристалла белым светом кристалл по разным направлениям оказывается различно окрашенным.
Дихроичные кристаллы приобрели еще более важное значение в связи с изобретением поляроидов.Примером поляроида может служить тонкая пленка из целлулоида, в которую вкраплены кристаллики герапатита (сернокислого иод-хинина). Поляроиды применяются, например, для защиты от ослепляющего действия солнечных лучей и фар встречного автотранспорта.
Двойное лучепреломление имеет место в естественных анизотропных средах. Существуют, однако, различные способы получения искусственной оптической анизотропии,т. е. сообщения оптической анизотропии естественно изотропным веществам.
Оптически изотропные вещества становятся оптически анизотропными под действием: 1) одностороннего сжатия или растяжения (кристаллы кубической системы, стекла и др.); 2) электрического поля (эффект Керра; жидкости, аморфные тела, газы); 3) магнитного поля (жидкости, стекла, коллоиды). В перечисленных случаях вещество приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением деформации, электрического или магнитного полей соответственно указанным выше воздействиям.
Эффект Керра— оптическая анизотропия веществ под действием электрического поля — объясняется различной поляризуемостью молекул жидкости по разным направлениям.