I. кинематика криволинейного движения

ОБЩИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

1. Указать основные законы и формулы, на которых базируется решение, разъяснить буквенные обозначения формул. Если при решении задач применяется формула, полученная для частного случая, не выражающая какой-нибудь физический закон, или не являющаяся определением какой-нибудь физической величины, то ее следует вывести.

2. Дать чертеж, поясняющий содержание задачи (в тех случаях, когда это возможно).

3. Сопровождать решение задачи краткими, но исчерпывающими пояснениями.

4. Подставить в рабочую формулу числовые значения величин, выраженные в единицах одной системы.

5. Произвести вычисление величин, подставленных в формулу, руководствуясь правилами приближенных вычислений, записать в ответе числовое значение и сокращенное наименование единицы искомой величины.

6. Оценить, где это целесообразно, правдоподобность численного ответа.

ТЕМЫ ЗАДАЧ

I. КИНЕМАТИКА КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ

II. ДИНАМИКА ПОСТУПАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ.

III. ЗАКОНЫ СОХРАНЕНИЯ ЭНЕРГИИ И ИМПУЛЬСА.

IV. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩАЮЩЕГОСЯ ТЕЛА.

V. ГАЗОВЫЕ ЗАКОНЫ

VI. ТЕПЛОЕМКОСТЬ И ВНУТРЕННЯЯ ЭНЕРГИЯ ГАЗА

VII. ТЕРМОДИНАМИКА.

VIII. КПД ТЕПЛОВЫХ МАШИН

I. КИНЕМАТИКА КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ

1.1. Маховик вращается с частотой 300 об/мин. Будучи предоставлен самому себе, он остановился через 30 сек. Определить угловое ускорение при замедлении и количество оборотов до остановки.

1.2. Маховик, находившийся в покое, приведен в равноускоренное вращение с угловым ускорением 0,5 рад/сек2. Через сколько времени маховик будет обладать угловой скоростью 360 рад/мин? Сколько нужно времени, чтобы маховик, вращаясь равноускоренно, совершил 600 оборотов?

1.3. Найти угловое ускорение колеса, если известно, что через время 2 сек после начала движения вектор полного ускорения точки, лежащей на ободе, составляет угол 60° с вектором ее линейной скорости.

1.4. Колесо радиусом 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением j=А+Bt+Ct3, где А=3 рад, В=2 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 2 сек после начала движения: угловую скорость, линейную скорость, угловое ускорение, тангенциальное и нормальное ускорения.

1.5. Точка движется по окружности радиусом 2 см. Зависимость пути от времени дается уравнением s=Ct3 , где С=0,1 см/с3. Найти тангенциальное ускорение точки в момент, когда линейная скорость точки равна 0,3 м/с.

1.6. Тело брошено со скоростью V0=20 м/с под углом 300 к горизонту. Пренебрегая сопротивлением воздуха, определить для момента времени t=1,5 с после начала движения: нормальное ускорение и тангенциальное ускорение.

1.7. Пуля выпущена с начальной скоростью 200 м/с под углом 600 к горизонту. Определить максимальную высоту подъема и радиус кривизны траектории пули в наивысшей точке. Сопротивлением воздуха пренебречь.

1.8. Камень брошен горизонтально со скоростью 15 м/с. Найти нормальное и тангенциальное ускорения камня через 1 сек. после начала движения.

1.9. Маховик начал вращаться равноускоренно и за промежуток времени 10 c достиг частоты вращения 300 мин-1. Определить угловое ускорение маховика и число оборотов, которое он сделал за это время.

1.10. Колесо радиусом 1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением j=Bt+Ct3, где В=2 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 5 с после начала движения: угловую скорость, угловое ускорение, тангенциальное и нормальное ускорения.

1.11. Точка движется по окружности радиусом 5 см. Зависимость пути от времени дается уравнением s=Ct3, где С=2 см/с3. Найти тангенциальное ускорение точки в момент, когда линейная скорость точки равна 1 м/с.

1.12. Тело брошено горизонтально со скоростью 15 м/с. Пренебрегая сопротивлением воздуха, определить радиус кривизны траектории тела через 2 с после начала движения.

1.13. Материальная точка начинает двигаться по окружности радиусом 12,5 см с постоянным тангенциальным ускорением 0,5 см/с2. Определить: момент времени, при котором вектор ускорения образует с вектором скорости и угол 450.

1.14. Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определить радиус колеса, если через 1 cек после начала движения полное ускорение колеса равно 7,5 м/с2.

1.15. Точка движется по окружности радиусом 15 см с постоянным тангенциальным ускорением. К концу четвертого оборота после начала движения линейная скорость точки 15 см/с. Определить нормальное ускорение точки через 16 с после начала движения.

1.16. Под углом 60° к горизонту брошено тело со скоростью 20 м/с. Определить нормальное и тангенциальное ускорения через 1 с после начала движения. Трение отсутствует.

1.17. Камень брошен горизонтально со скоростью 10 м/с. Найти радиус кривизны траектории камня через 3 с после начала движения.

1.18. Под углом 45° к горизонту брошено тело со скоростью 50 м/с. Определить нормальное и тангенциальное ускорения через 4 с после начала движения. Трение отсутствует.

1.19. Колесо радиусом 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением j=А+Bt+Ct3, где А=5 рад, В=3 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 1 с после начала движения тангенциальное и нормальное ускорения.

1.20. Точка движется по окружности радиусом 5 см. Зависимость пути от времени дается уравнением s=Ct3, где С=1 см/с3. Найти полное ускорение точки в момент, когда ее линейная скорость равна 1 м/с.

Наши рекомендации