Тепловое излучение. квантовые свойства света.

Поток энергии, испускаемый единицей площади поверхности нагретого тела по всем направлениям в пределах телесного угла 2π (энергетическая светимость тела Rm), равен

,

где – испускательная способность тела, – циклическая частота.

Закон Стефана-Больцмана:

,

где Вт/м2К4 – постоянная Стефана – Больцмана;
T – температура.

Закон Кирхгофа: отношение испускательной способности тела к его поглощательной способности есть универсальная функция частоты и температуры f(ω,T). Испускательная способность абсолютно черного тела, описывается формулой Планка:

где – постоянная Планка; с – скорость света; k – постоянная Больцмана. При переходе от частоты к длине волны эта функция приобретает вид:

Испускательная способность абсолютно черного тела связана с равновесной плотностью энергии теплового излучения u(ω,T) соотношением

Закон Вина

где – некоторая функция отношения частоты к температуре.

Для функции закон Вина имеет вид

где некоторая функция произведения (λ;T).

Закон смещения Вина:

где – длина волны, на которую приходится максимум функции ; b=2,898 (м·К) – постоянная Вина.

Формула Рэлея-Джинса

Уравнение Эйнштейна для фотоэффекта

где – частота света, – работа выхода электронов с поверхности жидкости или твердого тела, – кинетическая энергия вылетающих электронов.

Изменение длины волны рентгеновского излучения при рассеянии на свободном электроне (эффект Комптона)

где – длина волны рентгеновского излучения после рассеяния; – длина волны падающего излучения; – масса покоя электрона; – угол, под которым рассеивается излучение; – комптоновская длина волны.

Энергия фотона

Масса фотона

Импульс фотона

Задача 1. Определить энергетическую светимость абсолютно черного тела в интервале длин волн =1 нм, соответствующую максимуму его испускательной способности при T=1000 К.

Решение. Из закона смещения Вина определим длину волны излучения абсолютно черного тела, на которую приходится максимум излучения.

м.

Интервал длин волн много меньше длины волны , поэтому энергетическую светимость можно определить как произведение испускательной способности на

Задача 2. На металлическую пластину падает свет с длиной волны λ=420 нм. Фототок прекращается при запирающем потенциале U=0,95 В. Определить скорость выбиваемых электронов и работу выхода.

Решение. Скорость электронов найдем, воспользовавшись законом сохранения энергии mV2/2=eU, где е – заряд электрона. Скорость электрона:

м/с.

Работа выхода фотоэлектронов равна

Задача 3. В опыте Комптона угол рассеивания рентгеновских фотонов равен φ=90°. Энергия рассеянных фотонов Е=0,4 МэВ. Какова энергия фотонов до рассеивания? Какова энергия, импульс и скорость электронов отдачи?

Решение. Изменение длины волны в результате рассеяния на свободном электроне определяется с помощью формулы Комптона:

Длины волн выразим через энергии Е1 и Е0 соответствующих фотонов:

Отсюда следует, что энергия фотонов до рассеивания равна

Энергия покоя электрона m0c2=0,51 МэВ. Энергию фотона выразим в мегаэлектронвольтах:

МэВ.

Из закона сохранения энергии следует, что кинетическая энергия электрона отдачи равна разности энергии фотона до рассеяния и после рассеяния Ее=E0-E1=1,85–0,4=1,4 МэВ.

Импульс электрона найдем из закона сохранения импульса:

Рис. 2
, где и - импульс фотона до рассеяния и после рассеяния. Векторная диаграмма импульсов при рассеянии изображена на рис.2. Из диаграммы следует, что

Импульс фотонов представим через их энергию, выраженную в джоулях,

кг·м/с.

Скорость электронов отдачи найдем, воспользовавшись выражением для релятивистского импульса

Отсюда следует, что

м/с.

2.1. С помощью формулы Планка показать, что в области, где hω<<kT, для испускательной способности абсолютно черного тела справедлив закон Рэлея – Джинса.

2.2 С помощью формулы Планка показать, что в области, где hω>>kT, для испускательной способности абсолютно черного тела справедлива формула Вина.

2.3. Вычислить с помощью формулы Планка энергетическую светимость абсолютно чёрного тела в интервале длин волн Δλ=1 нм, соответствующем максимуму испускательной способности при Т=3000 К.

2.4. С помощью формулы Планка показать, что максимальное значение испускательной способности абсолютно чёрного тела пропорционально абсолютной температуре в пятой степени: ~T5.

2.5. С помощью формулы Планка показать, что длина волны, на которую приходится максимум испускательной способности чёрного тела, обратно пропорциональна температуре: λ0=b/T, где b – постоянная Вина.

2.6. Температура поверхности Солнца равна T0=5500 К. Принимая Солнце за абсолютно черное тело, оценить массу, теряемую им за секунду в результате излучения.

2.7. Для абсолютно черного тела вблизи его максимума испускательной способности рассчитать с помощью формулы Планка мощность излучения с единицы поверхности в интервале длин волн ∆λ=1 нм. Температура тела равна 4000 К.

2.8. Для абсолютно чёрного тела в области максимума испускательной способности определить мощность излучения с 1 см2 его поверхности для интервала длин волн λ 0,01λмах. Температура тела Т=2000 К.

2.9. Удаленный от других тел медный шарик облучен электромагнитным излучением с длиной волны λ=140 нм. Определить его потенциал?

2.10. Какой частоты нужно взять свет, чтобы выбитые из вольфрамового катода электроны задерживались на расстоянии 4 см в электрическом поле напряженностью 1,7 В/см?

2.11. Опыт показал, что задерживающее напряжение для фотоэлектронов равно 2 В. Электрод облучили светом с длиной волны λ=200 нм. Найти красную границу фотоэффекта.

2.15. На площадь S=6 см2 по нормали падает монохроматический свет с плотностью потока энергии q=1,5 Вт/см2. Снятый с этой площади фототок насыщения равен 0,2 А. Считая, что каждый фотон выбивает электрон, найти частоту света и энергию фотона.

2.16. Фотоны с длиной волны 330 нм выбивают электроны, которые могут быть задержаны на расстоянии 2 см в электрическом поле напряженностью 2 В/см. Какова работа выхода электронов из металла (в эВ)?

2.17. Фототок вызывается светом с длиной волны 400 нм. Красная граница фотоэффекта 800 нм. Найти запирающее напряжение для электронов.

2.18. Найти красную границу фотоэффекта и построить график зависимости задерживающей разности потенциалов от частоты. При длине волны света 520 нм кинетическая энергия электронов равна 2 эВ.

2.19. Точечный источник монохроматического света на длине волны λ=500 нм имеет мощность P=10 Вт. На каком максимальном расстоянии этот источник будет замечен человеком? Глаз человека реагирует на световой поток W=60 фотонов в секунду. Диаметр зрачка глаза человека d=0,5 см.

2.20. Параллельный пучок света с интенсивностью Io падает под углом φ на плоское зеркало с коэффициентом отражения ρ. Определить давление света на зеркало.

2.21. Частота падающего света в опыте Комптона равна 4·1018 Гц. Найти частоту света, отраженного под углом 120° к направлению его падения.

2.22. Длина волны падающего света в опыте Комптона равна λ. Найти длину волны отраженного света, если известно, что электрон отдачи полетел под углом α=60° к первоначальному направлению распространения света и обладал импульсом .

2.23. Частота падающего света в опыте Комптона ν1=3·1022 1/с. Под каким углом рассеивается свет, если частота рассеянного света ν2=2,5·1022 1/с?

2.24. В опыте Комптона угол рассеяния фотонов равен 180°. Длина волны падающих фотонов равна λ=0,5 нм. Найти частоту рассеянных фотонов.

2.25. В эффекте Комптона найти изменение длины волны рентгеновского излучения. Угол рассеяния фотонов равен 120°, а их длина волны 0,5 нм.

Наши рекомендации