Массы атомов легких изотопов

Основные понятия и формулы

Скорость света в среде

Массы атомов легких изотопов - student2.ru ,

где с — скорость света в вакууме; п — показатель преломления среды.

Релятивистская масса

Массы атомов легких изотопов - student2.ru ,

где mo — масса покоя частицы; v — ее скорость; с —-скорость света в вакууме; b— скорость частицы, выраженная в долях скорости света (b= v/с).

Взаимосвязь массы и энергии релятивистской частицы

Массы атомов легких изотопов - student2.ru ,

где Массы атомов легких изотопов - student2.ru —энергия покоя частицы.

Полная энергия свободной частицы

Массы атомов легких изотопов - student2.ru ,

где Т — кинетическая энергия релятивистской частицы.

Кинетическая энергия релятивистской частицы

Массы атомов легких изотопов - student2.ru .

Импульс релятивистской частицы

Массы атомов легких изотопов - student2.ru .

Связь между полной энергией и импульсом релятивистской частицы

Массы атомов легких изотопов - student2.ru

Закон Стефана—Больцмана

Массы атомов легких изотопов - student2.ru ,

где Re — энергетическая светимость абсолютно черного тела, s —постоянная Стефана— Больцмана; Т — термодинамическая температура Кельвина.

Если тело не является абсолютно черным, то закон Стефана—Больцмана применяют в виде

Массы атомов легких изотопов - student2.ru ,

где a— коэффициент (степень) черноты тела (a<1).

Закон смещения Вина

Массы атомов легких изотопов - student2.ru ,

где lm — длина волны, на которую приходится максимум энергии излучения; b — постоянная Вина.

Максимальная спектральная плотность энергетической светимости абсолютно черного тела

Массы атомов легких изотопов - student2.ru ,

где С1 = 1,29 10-5 Вт/(м3 К5).

Энергия фотона

Массы атомов легких изотопов - student2.ru ,

где h — постоянная Планка; Массы атомов легких изотопов - student2.ru — постоянная Планка, деленная на 2p; n — частота фотона; w — циклическая частота.

Масса фотона

Массы атомов легких изотопов - student2.ru .

где с — скорость света в вакууме; l — длина волны фотона.

Импульс фотона

Массы атомов легких изотопов - student2.ru .

Формула Эйнштейна для фотоэффекта

Массы атомов легких изотопов - student2.ru

где hn — энергия фотона, падающего на поверхность металла; А — работа выхода электрона; Tmax— максимальная кинетическая энергия фотоэлектрона.

Красная граница фотоэффекта

Массы атомов легких изотопов - student2.ru , или Массы атомов легких изотопов - student2.ru

где no — минимальная частота света, при которой еще возможен фотоэффект; lо — максимальная длина волны света, при которой еще возможен фотоэффект; h — постоянная Планка; с — скорость света в вакууме.

Формула Комптона

Массы атомов легких изотопов - student2.ru ,

где l1 — длина волны фотона, встретившегося со свободным или слабосвязанным электроном; l2 — длина волны фотона, рассеянного на угол q после столкновения с электроном; то — масса покоящегося электрона.

Комптоновская длина волны

Массы атомов легких изотопов - student2.ru .

Давление света при нормальном падении на поверхность

Массы атомов легких изотопов - student2.ru ,

где Ее — энергетическая освещенность, w — объемная плотность энергии излучения; r — коэффициент отражения.

Момент импульса электрона согласно теории Бора для атома водорода

Массы атомов легких изотопов - student2.ru ,

где m — масса электрона; vn — скорость электрона на n-й орбите; rn — радиус n-й стационарной орбиты; ћ=h/2p — постоянная Планка; п — главное квантовое число (n= 1, 2,3,...).

Радиус n -й стационарной орбиты

Массы атомов легких изотопов - student2.ru ,

где ao — первый боровский радиус.

Энергия электрона в атоме водорода

Массы атомов легких изотопов - student2.ru ,

где Ei — энергия ионизации атома водорода.

Энергия, излучаемая или поглощаемая атомом водорода,

Массы атомов легких изотопов - student2.ru ,

где п1 и п2 — квантовые числа, соответствующие энергетическим уровням, между которыми совершается переход электрона в атоме.

Спектроскопическое волновое число

Массы атомов легких изотопов - student2.ru ,

где l — длина волны излучения или поглощения атомом; R — постоянная Ридберга.

Длина волны де Бройля

Массы атомов легких изотопов - student2.ru ,

где р — импульс частицы.

Импульс частицы и его связь с кинетической энергией Т:

a) Массы атомов легких изотопов - student2.ru при v <<c (нерелятивистский случай),

б) Массы атомов легких изотопов - student2.ru при v£c (релятивистский случай),

где то — масса покоя частицы; т — релятивистская масса; v — скорость частицы; с — скорость света в вакууме; Еo — энергия покоя частицы (Еo = тоc2)

Соотношение неопределенностей:

а) Массы атомов легких изотопов - student2.ru (для координаты и импульса),

где Dрx, — неопределенность проекции импульса на ось X,Dх — неопределенность координаты;

б) Массы атомов легких изотопов - student2.ru (для энергии и времени),

где DE — неопределенность энергии; Dt — время жизни квантовой системы в данном энергетическом состоянии.

Одномерное уравнение Шредингера для стационарных состояний

Массы атомов легких изотопов - student2.ru ,

где y= y(х) — волновая функция, описывающая состояние частицы; т — масса частицы; Е — полная энергия; U= U(x) — потенциальная энергия частицы.

Плотность вероятности

Массы атомов легких изотопов - student2.ru ,

где dw(x) — вероятность того, что частица может быть обнаружена вблизи точки с координатой х на участке dx.

Вероятность обнаружения частицы в интервале от х1 до х2

Массы атомов легких изотопов - student2.ru .

Решение уравнения Шредингера для одномерного, бесконечно глубокого, прямоугольного потенциального ящика:

а) Массы атомов легких изотопов - student2.ru (собственная нормированнаяволновая функция);

б) Массы атомов легких изотопов - student2.ru (собственное значение энергии),

где п—квантовое число (п= 1, 2, 3, ...); l—ширина ящика. В области 0 <x< l U=¥ и y(х)=0.

Массовое число ядра (число нуклонов в ядре)

Массы атомов легких изотопов - student2.ru ,

где Z — зарядовое число (число протонов); N — число нейтронов.

Закон радиоактивного распада

Массы атомов легких изотопов - student2.ru , или Массы атомов легких изотопов - student2.ru ,

где dN — число ядер, распадающихся за интервал времени dt, N — число ядер, не распавшихся к моменту времени t; No — число ядер в начальный момент (to=0); l— постоянная радиоактивного распада.

Число ядер, распавшихся за время t,

Массы атомов легких изотопов - student2.ru .

В случае, если интервал времени Dt, за который определяется число распавшихся ядер, много меньше периода полураспада T1/2, то число распавшихся ядер можно определить по формуле

Массы атомов легких изотопов - student2.ru .

Зависимость периода полураспада от постоянной радиоактивного распада

Массы атомов легких изотопов - student2.ru .

Среднее время t жизни радиоактивного ядра, т. е. интервал времени, за который число нераспавшихся ядер уменьшается в е раз,

Массы атомов легких изотопов - student2.ru .

Число атомов N, содержащихся радиоактивном изотопе,

Массы атомов легких изотопов - student2.ru ,

где m—масса изотопа; m—молярная масса; Na— постоянная Авогадро.

Активность А радиоактивного изотопа

Массы атомов легких изотопов - student2.ru ,

где dN — число ядер, распадающихся за интервал времени dt; Ao — активность изотопа в начальный момент времени.

Удельная активность изотопа

Массы атомов легких изотопов - student2.ru .

Дефект массы ядра,

Массы атомов легких изотопов - student2.ru ,

где Z — зарядовое число (число протонов в ядре); А — массовое число (число нуклонов в ядре); (А—Z) — число нейтронов в ядре; mp — масса протона; mn — масса нейтрона; mядр — масса ядра.

Изменение энергии при ядерной реакции определяется соотношением

Массы атомов легких изотопов - student2.ru

где åM1—сумма масс частиц до реакции и åM2—сумма масс частиц после реакции. Если åM1 > åM2, то реакция идет с выделением энергии, если же åM1 < åM2, то реакция идет с поглощением энергии. Отметим, что в последнюю формулу так же, как и при вычислении энергии связи ядра, мы можем подставлять массу изотопов, а не ядер, так как поправки на массу электронов оболочки входят с разными знаками и поэтому исключаются.

Энергия связи ядра

Массы атомов легких изотопов - student2.ru ,

где Dm — дефект массы ядра; с — скорость света в вакууме. Во внесистемных единицах энергия связи ядра равна Eсв= 931 Dm, где дефект массы Dm—в а.е.м.; 931— коэффициент пропорциональности (1 а.е.м.~931 МэВ).

Контрольные задачи

1.Частица движется со скоростью v=с/3, где c— скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?

2.При какой скорости b (в долях скорости света) релятивистская масса любой частицы вещества в п=3 paза больше массы покоя?

3.Определить отношение релятивистского импульса электрона с кинетической энергией T=1,53 МэВ к комптоновскому импульсу moc электрона.

4.Скорость электрона v=0,8 с (где с — скорость света в вакууме). Зная энергию покоя электрона в единицах МэВ, определить в тех же единицах кинетическую энергию Т электрона.

5.Протон имеет импульс р=469 МэВ/с. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое? (1 МэВ/с=5,33х10-22 кг м/с)

6.Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т=1,53 МэВ, больше массы покоя mo?

7.Какую скорость b (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя?

8.При какой скорости v релятивистская масса частицы в k=3 раза больше массы покоя этой частицы?

9.Релятивистский электрон имел импульс р1oc. Определить конечный импульс этого электрона (в единицах тoc), если его энергия увеличилась в n=2 раза.

10.Определить скорость v электрона, имеющего кинетическую энергию Т=1,53 МэВ.

11.Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в п=2 раза.

12.Электрон движется, со скоростью v=0,6 с, где с — скорость света в вакууме. Определить релятивистский импульс р электрона.

13.Вычислить истинную температуру Т вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру Tрад=2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна a=0,35.

14.Вычислить энергию, излучаемую за время t=1 мин с площади S=l см2 абсолютно черного тела, температура которого T=1000 К.

15.Черное тело имеет температуру Т1=500 К. Какова будет температура Т2 тела, если в результате нагревания поток излучения увеличится в п=5 раз?

16.Длина волны, на которую приходится максимум энергии излучения абсолютно черного тела, lm=0,6 мкм. Определить температуру Т тела.

17.Температура абсолютно черного тела Т=2 кК. Определить длину волны lm, на которую приходится максимум энергии излучения, и спектральную плотность энергетической светимости (rl,T)maxдля этой длины волны.

18.Определить максимальную спектральную плотность (rl,T)max энергетической светимости, рассчитанную на 1 нм в спектре излучения абсолютно черного тела. Температура тела Т=1 К.

19.Определить температуру Т и энергетическую светимость Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны lm=600 нм.

20.Из смотрового окошечка печи излучается поток Фе=4 кДж/мин. Определить температуру Т печи, если площадь окошечка S=8 см2.

21.Поток излучения абсолютно черного тела Фе=10 кВт. Максимум энергии излучения приходится на длину волны lm=0,8 мкм. Определить площадь S излучающей поверхности.

22.Как и во сколько раз изменится поток излучения абсолютно черного тела, если максимум энергии излучения переместится с красной границы видимого спектра (lm1=780 нм) на фиолетовую (lm2=390 нм)?

23.Определить поглощательную способность а серого тела, для которого температура, измеренная радиационным пирометром, Tрад=1,4 кК, тогда как истинная температура Т тела равна 3,2 кК.

24.Муфельная печь, потребляющая мощность Р=1 кВт, имеет отверстие площадью S=100 см2. Определить долю h мощности, рассеиваемой стенками печи, если температура ее внутренней поверхности равна 1 кК.

25.Средняя энергетическая светимость R поверхности Земли равна 0,54 Дж/(см2 мин). Какова должна быть температура Т поверхности Земли, если условно считать, что она излучает как серое тело с коэффициентом черноты а=0,25?

26.Определить энергию e, массу m и импульс р фотона с длиной волны l=1,24 нм.

27.Красная граница фотоэффекта для цинка lo=310 нм. Определить максимальную кинетическую энергию Tmax фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны l=200 нм.

28.На поверхность калия падает свет с длиной волны l=150 нм. Определить максимальную кинетическую энергию Tmax фотоэлектронов.

29.Фотон с энергией e=10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс р, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин.

30.На фотоэлемент с катодом из лития падает свет длиной волны l=200 нм. Найти наименьшее значение задерживающей разности потенциалов Umin, которую нужно приложить к фотоэлементу, чтобы прекратить фототок.

31.На пластину падает монохроматический свет (l=0,42 мкм). Фототок прекращается при задерживающей разности потенциалов U=0,95 В. Определить работу А выхода электронов с поверхности пластины.

32.Какова должна быть длина волны излучения, падающего на платиновую пластину, чтобы максимальная скорость фотоэлектронов была vmax=3 Мм/с?

33.На цинковую пластину падает пучок ультрафиолетового излучения (l=0,2 мкм). Определить максимальную кинетическую энергию Tmax и максимальную скорость vmax фотоэлектронов.

34.На металлическую пластину направлен пучок ультрафиолетового излучения (l=0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов Umin=0,96 В. Определить работу выхода А электронов из металла.

35.Определить максимальную скорость vmax фотоэлектрона, вырванного с поверхности металла g-квантом с энергией e=1,53 МэВ.

36.На поверхность металла падает монохроматический свет с длиной волны l=0,1 мкм. Красная граница фотоэффекта lo=0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии?

37.На металл падает рентгеновское излучение с длиной волны l=1 нм. Пренебрегая работой выхода, определить максимальную скорость vmax фотоэлектронов.

38.На металлическую пластину направлен монохроматический пучок света с частотой n=7,3 1014 Гц. Красная граница lo фотоэффекта для данного материала равна 560 нм. Определить максимальную скорость vmaxфотоэлектронов.

39.На цинковую пластину направлен монохроматический пучок света. Фототок прекращается при задерживающей разности потенциалов U=1,5 В. Определить длину волны l света, падающего на пластину.

40.Определить угол q рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны при рассеянии Dl=3,63 пм.

41.Фотон при эффекте Комптона на свободном электроне был рассеян на угол q=p/2. Определить Импульс р (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была e1=1,02 МэВ (1 МэВ/с=5,33х10-22 кг м/с).

42.Рентгеновское излучение (l=1 нм) рассеивается электронами, которые можно считать практически свободными. Определить максимальную длину волны lmaxрентгеновского излучения в рассеянном пучке.

43.Фотон с энергией e1, равной энергии покоя электрона (тос2), рассеялся на свободном электроне на угол q=120°. Определить энергию e2 рассеянного фотона и кинетическую энергию Т электрона отдачи (в единицах тос2).

44.Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол q=p/2? Энергия фотона до рассеяния e1=0,51 МэВ.

45.Определить максимальное изменение длины волны (Dl)max, при комптоновском рассеянии света на свободных электронах и свободных протонах.

46.Фотон с длиной волны l1=15 пм рассеялся на свободном электроне. Длина волны рассеянного фотона l2=16 пм. Определить угол q рассеяния.

47.Фотон с энергией e1=0,51 МэВ был рассеян при эффекте Комптона на свободном электроне на угол q=180°. Определить кинетическую энергию T электрона отдачи.

48.В результате эффекта Комптона фотон с энергией e1=1,02 МэВ рассеян на свободных электронах на угол q=150°. Определить энергию e1 рассеянного фотона.

49.Определить угол q, на который был рассеян квант с энергией e1=1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи T =0,51 МэВ.

50.Фотон с энергией e1=0,51 МэВ при рассеянии на свободном электроне потерял половину своей энергии. Определить угол рассеяния q.

51.Определить импульс ре электрона отдачи, если фотон с энергией e1=1,53 МэВ в результате рассеяния на свободном электроне потерял 1/3 своей энергии.

52.Определить энергетическую освещенность Ее зеркальной поверхности, если давление р,производимое излучением, равно 40 мкПа. Излучение падает нормально к поверхности.

53.Поток энергии, излучаемой электрической лампой, Фе=600 Вт. На расстоянии r=1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d=2 см. Определить силу F светового давления на зеркальце. Лампу рассматривать как точечный изотропный излучатель.

54.Давление р света с длиной волны l=40 нм, падающего нормально на черную поверхность, равно 2 нПа. Определить число N фотонов, падающих за время t=10 с на площадь S=1 мм2 этой поверхности.

55.Параллельный пучок монохроматического света с длиной волны l=0,663 мкм падает на зачерненную поверхность и производит на нее давление р=0,3 мкПа. Определить концентрацию п фотонов в световом пучке.

56.Определить коэффициент отражения r поверхности, если при энергетической освещенности Ее=120 Вт/м2 давление р света на нее оказалось равным 0,5 мкПа.

57.Давление света, производимое на зеркальную поверхность, р=5 мПа. Определить концентрацию noфотонов вблизи поверхности, если длина волны света, падающего на поверхность, l=0,5 мкм.

58.На расстоянии r=5 м от точечного монохроматического (l=0,5 мкм) изотропного источника расположена площадка (S=8 мм2) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения Р=100 Вт.

59.На зеркальную поверхность под углом a=60° к нормали падает пучок монохроматического света (l=590 нм). Плотность потока энергии светового потока Ф=1 кВт/м2. Определить давление р, производимое светом на зеркальную поверхность.

60.Свет падает нормально на зеркальную поверхность, находящуюся на расстоянии r=10 см от точечного изотропного излучателя. При какой мощности Р излучателя давление р на зеркальную поверхность будет равным 1 мПа?

61.Свет с длиной волны l=600 нм нормально падает на зеркальную поверхность и производит на нее давление р=4 мкПа. Определить число N фотонов, падающих за время t=10 с на площадь S=1 мм2 этой поверхности.

62.На зеркальную поверхность площадью S=6 см2падает нормально поток излучения Фе=0,8 Вт. Определить давление р и силу давления F света на эту поверхность.

63.Точечный источник монохроматического (l=1 нм) излучения находится в центре сферической зачерненной колбы радиусом R=10 см. Определить световое давление р, производимое на внутреннюю поверхность колбы, если мощность источника Р=1 кВт.

64.Невозбужденный атом водорода поглощает квант излучения с длиной волны l=102,6 нм. Вычислить, пользуясь теорией Бора, радиус r электронной орбиты возбужденного атома водорода.

65.Определить энергию e фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на основной уровень.

66.Вычислить по теории Бора радиус r2 второй стационарной орбиты и скорость v2 электрона на этой орбите для атома водорода.

67.Вычислить по теории Бора период Т вращения электрона в атоме водорода, находящегося в возбужденном состоянии, определяемом главным квантовым числом п=2.

68.Определить изменение энергии DE электрона в атоме водорода при излучении атомом фотона с частотой n=6,28 1014 Гц.

69.Во сколько раз изменится период Т вращения электрона в атоме водорода, если при переходе в невозбужденное состояние атом излучил фотон с длиной волны l=97,5 нм?

70.На сколько изменилась кинетическая энергия электрона в атоме водорода при излучении атомом фотона с длиной волны l=435 нм?

71.В каких пределах Dl должна лежать длина волн монохроматического света, чтобы при возбуждении атомов водорода квантами этого света радиус r орбиты электрона увеличился в 16 раз?

72.В однозарядном ионе лития электрон перешел с четвертого энергетического уровня на второй. Определить длину волны l излучения, испущенного ионом лития.

73.Электрон в атоме водорода находится на третьем энергетическом уровне. Определить кинетическую Т, потенциальную П и полную Е энергию электрона. Ответ выразить в электрон-вольтах.

74.Фотон выбивает из атома водорода, находящегося в основном состоянии, электрон с кинетической энергией E=10 эВ. Определить энергию e фотона.

75.Вычислить длину волны де Бройля l для электрона, прошедшего ускоряющую разность потенциалов U=22,5 B.

76.Вычислить длину волны де Бройля l для протона, движущегося со скоростью v=0,6 с (с— скорость света в вакууме).

77.Вычислить наиболее вероятную длину волны де Бройля l молекул азота, содержащихся в воздухе при комнатной температуре.

78.Определить энергию DT, которую необходимо дополнительно сообщить электрону, чтобы его длина волны де Бройля уменьшилась от l1=0,2 мм до l2=0,1 нм.

79.На сколько по отношению к комнатной должна измениться температура идеального газа, чтобы длина волны де Бройля l его молекул уменьшилась на 20%?

80.Параллельный пучок моноэнергетических электронов падает нормально на диафрагму в виде узкой прямоугольной щели, ширина которой а=0,06 мм. Определить скорость этих электронов, если известно, что на экране, отстоящем от щели на расстоянии l=40 мм, ширина центрального дифракционного максимума b=10 мкм.

81.При каких значениях кинетической энергии Т электрона ошибка в определении длины волны де Бройля l по нерелятивистской формуле не превышает 10%?

82.Из катодной трубки на диафрагму с узкой прямоугольной щелью нормально к плоскости диафрагмы направлен поток моноэнергетических электронов. Определить анодное напряжение трубки, если известно, что на экране, отстоящем от щели на расстоянии l=0,5 м, ширина центрального дифракционного максимума Dx=10,0 мкм. Ширину b щели принять равной 0,10 мм.

83.Протон обладает кинетической энергией Т=1 кэВ. Определить дополнительную энергию DT, которую необходимо ему сообщить для того, чтобы длина волны l де Бройля уменьшилась в три раза.

84.Определить длины волн де Бройля a- частицы и протона, прошедших одинаковую ускоряющую разность потенциалов U=1 кВ.

85.Электрон обладает кинетической энергией Т=1,02 МэВ. Во сколько раз изменится длина волны де Бройля, если кинетическая энергия Т электрона уменьшится вдвое?

86.Кинетическая энергия Т электрона равна удвоенному значению его энергии покоя (2moc2). Вычислить длину волны l де Бройля для такого электрона.

87.Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, движущегося внутри сферы радиусом R=0,05 нм.

88.Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию Tmin электрона, движущегося внутри сферической области диаметром d=0,1 нм.

89.Определить относительную неопределенность Dр/р импульса движущейся частицы, если допустить, что неопределенность ее координаты равна длине волны де Бройля.

90.Используя соотношение неопределенностей, оценить наименьшие ошибки Dv в определении скорости электрона и протона, если координаты центра масс этих частиц могут быть установлены с неопределенностью 1 мкм.

91.Какова должна быть кинетическая энергия Т протона в моноэнергетическом пучке, используемого для исследования структуры с линейными размерами l » 10-13 см?

92.Используя соотношение неопределенностей, оценить ширину 1 одномерного потенциального ящика, в котором минимальная энергия электрона Emin=10 эВ.

93.Альфа-частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Используя соотношение неопределенностей, оценить ширину l ящика, если известно, что минимальная энергия a-частицы Emin=8 МэВ.

94.Среднее время жизни атома в возбужденном состоянии составляет Dt=10-8 с. При переходе атома в нормальное состояние испускается фотон, средняя длина волны <l> которого равна 600 нм. Оценить ширину излучаемой спектральной линии Dl, если не происходит ее уширения за счет других процессов.

95.Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность Dr радиуса r электронной орбиты и неопределенность Dp импульса p электрона на такой орбите соответственно связаны следующим образом: Dr»r и Dp»p. Используя эти соотношения и соотношение неопределенностей, найти значение радиуса электронной орбиты, соответствующего минимальной энергии электрона в атоме водорода.

96.Моноэнергетический пучок электронов высвечивает в центре экрана электронно-лучевой трубки пятно радиусом r»10 см. Пользуясь соотношением неопределенностей, найти, во сколько раз неопределенность Dx координаты электрона на экране в направлении, перпендикулярном оси трубки, меньше размера r пятна. Длину L электронно-лучевой трубки принять равной 0,50 м, а ускоряющее электрон напряжение U — равным 20 кВ.

97.Среднее время жизни Dt атома в возбужденном состоянии составляет около 10-8 с. При переходе атома в нормальное состояние испускается фотон, средняя длина волны <l> которого равна 400 нм. Оценить относительную ширину Dl./l, излучаемой спектральной линии, если не происходит уширения линии за счет других процессов.

98.Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность Dr радиуса r электронной орбиты и неопределенность Dp импульса р электрона на такой орбите соответственно связаны следующим образом: Dr»r и Dp»p. Используя эти связи, а также соотношение неопределенностей, определить минимальное значение энергии Tmin электрона в атоме водорода.

99.Частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Найти отношение разности DEn,n+1 соседних энергетических уровней к энергии En частицы в трех случаях: 1) n=2; n=5; 3) n ®¥.

100.Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l=0,1 нм. Определить в электрон-вольтах наименьшую разность энергетических уровней электрона.

101.Электрон находится в прямоугольном потенциальном ящике с непроницаемыми стенками. Ширина ящика l=0,2 нм, энергия электрона в ящике Е=37,8 эВ. Определить номер п энергетического уровня и модуль волнового вектора (k=2p/l).

102.Частица в потенциальном ящике находится в основном состоянии. Какова вероятность обнаружения частицы: в средней трети ящика? в крайней трети ящика?

103.Частица в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l находится в возбужденном состоянии (n=3). Определить, в каких точках интервала 0<х<l плотность вероятности нахождения частицы имеет максимальное и минимальное значения.

104.В прямоугольной потенциальной яме шириной l с абсолютно непроницаемыми стенками (0<х<.l) находится частица в основном состоянии. Найти вероятность w местонахождения этой частицы в области 1/4l<х <3/4l.

105.Частица в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике находится в основном состоянии. Какова вероятность w обнаружения частицы в крайней четверти ящика?

106.Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид y(r)=A exp(-r/ao), где А — некоторая постоянная; аo — первый боровский радиус. Найти для основного состояния атома водорода наиболее вероятное расстояние электрона от ядра.

107.Частица находится в основном состоянии в прямоугольной яме шириной l с абсолютно непроницаемыми стенками. Во сколько раз отличаются вероятности местонахождения частицы: w1 — в крайней трети и w2 — в крайней четверти ящика?

108.Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид y(r)=A exp(-r/ao), где А — некоторая постоянная; аo— первый боровский радиус. Найти для основного состояния атома водорода среднее значение <F> кулоновской силы.

109.Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l. В каких точках в интервале 0<х<l плотности вероятности нахождения электрона на втором и третьем энергетических уровнях одинаковы? Вычислить плотность вероятности для этих точек. Решение пояснить графиком.

110.Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид y(r)=A exp(-r/ao), где А — некоторая постоянная; аo — первый боровский радиус. Найти для основного состояния атома водорода среднее значение <П> потенциальной энергии.

111.Найти период полураспада T1/2 радиоактивного изотопа, если его активность за время t=10 сут уменьшилась на 24% по сравнению с первоначальной.

112.Определить, какая доля радиоактивного изотопа 89Ac225 распадается в течение времени t=6 сут.

113.Активность А некоторого изотопа за время t=10 сут уменьшилась на 20%. Определить период полураспада T1/2 этого изотопа.

114.Определить массу m изотопа 53I131, имеющего активность А=37 ГБк.

115.Найти среднюю продолжительность жизни t атома радиоактивного изотопа кобальта 27Co60.

116.Счетчик a-частиц, установленный вблизи радиоактивного изотопа, при первом измерении регистрировал N1=1400 частиц в минуту, а через время t=4 ч — только N2=400. Определить период полураспада T1/2 изотопа.

117.Во сколько раз уменьшится активность изотопа 15P32 через время t=20 сут?

118.На сколько процентов уменьшится активность изотопа иридия 77Ir192 за время t=15 сут?

119.Определить число N ядер, распадающихся в течение времени: 1) t1=1 мин; 2) t2=5 сут, — в радиоактивном изотопе фосфора 15P32 массой m=1 мг.

120.Изотопы какого элемента образуются из Массы атомов легких изотопов - student2.ru случае: 1) b–-распада;
2) К-захвата? Сколько протонов и нейтронов они содержат?

121.Вычислить энергию связи Есв ядра дейтерия 1H2 и трития 1H3.

122.Определить число N атомов радиоактивного препарата йода 53I131 массой т=0,5 мкг, распавшихся в течение времени: 1) t1=1 мин; 2) t2=7 суток.

123.Определить активность А радиоактивного препарата массой т=0,1 мкг.

124.Период полураспада радия 1600 лет. Через какое время число атомов уменьшится в 4 раза?

125.Чему равна активность радона, образовавшегося из 1 г радия за один час? (Период полураспада радона 3,8 дня)

126.К 10 мг радиоактивного изотопа 20Са45 примешано 30 мг нерадиоактивного изотопа 20Са40. Насколько уменьшилась удельная активность препарата?

127.Грибы, собранные в лесу имели по цезию-137 активность, равную 68500 Бк на 1 кг сухой биомассы. По истечении какого времени удельная активность этих грибов снизится до 3700 Бк/кг?

128.Найти число протонов и нейтронов, входящих в состав ядер трех изотопов магния: 1) 12Mg24, 2) 12Mg25 и 3) 12Mg26.

129.Найти энергию связи ядра изотопа лития 3Li7.

130.Найти энергию, освобождающуюся при ядерной реакции

3Li7 +1H1 ® 2He4 +2He4.

ТАБЛИЦЫ ВАРИАНТОВ КОНТРОЛЬНЫХ РАБОТ

Вариант Номера задач

ПРИЛОЖЕНИЯ

1. Основные физические постоянные (округленные значения), используемые в разделе 1

Элементарный заряд е 1,60×10-19 Кл
Скорость света в вакууме с 3,00×108 м/с
Постоянная Стефана—Больцмана s 5,67×10-8 Вт/ (м2 К4)
Постоянная закона смещения Вина b 2,90×10-3 м К
Постоянная Планка h 6,63×10-34 Дж с
Постоянная Планка ћ=h/2p 1,05×10-34 Дж с
Постоянная Ридберга R 1,10×10-7 м-1
Радиус Бора ao 0,529×10-10 м
Комптоновская длина волны электрона L 2,43×10-12 м
Энергия ионизации атома водорода Еi 2,18×10-18 Дж (13,6 эВ)
Атомная единица массы а.е.м. 1,660×10-27 кг
Электрическая постоянная eо 8,85×10-12 Ф/м
Магнитная постоянная mо 4p×10-7 Гн/м

Энергия ионизации

Вещество Еi, Дж Еi, эВ
Водород Гелий Литий Ртуть 2,18×10-18 3,94×10-18 1,21×10-18 1,66×10-18 13,6 24,6 75,6 10,4

Показатель преломления

Вещество Показатель
Алмаз Вода Глицерин Стекло 2,42 1,33 1,47 1,50

Работа выхода электронов

Металл А, Дж А, эВ Металл А, Дж А, эВ  
  Калий Литий Платина Рубидий 3,5 ×10-19 3,7 ×10-19 10× 10-19 3,4 ×10-19 2,2 2,3 6,3 2,1 Серебро Цезий Цинк 7,5 ×10-19 3,2× 10-19 6,4 ×10-19 4,7 2,0 4,0  
                         

Массы атомов легких изотопов

Наши рекомендации