Взаимное соответствие булевых функций
И логических схем
Двоичные переменные, входящие в логические уравнения, можно представить двумя различными электрическими сигналами. Путем преобразований этих сигналов получают другие, тоже двоичные, сигналы, которые соответствуют результатам определенных логических операций. Имея запись булевой функции y = f(x1, x2, ..., xn), можно составить развернутую электрическую схему, которая будет преобразовывать логические сигналы x1, x2, ..., xn согласно указанной функции.
Устройства, выполняющие в аппаратуре логические операции, называют логическими элементами. Логические элементы различаются между собой характером реализуемой функции, числом входов (по числу одновременно действующих переменных), числом выходов и другими признаками. Работа их оценивается только с точки зрения логики, без учета практического воплощения (технической базы, способа питания и т. п.).
Входы и выходы логических элементов в зависимости от уровня сигнала, при котором воспринимается или вырабатывается определенное значение двоичной переменной, подразделяются на прямые и инверсные. На прямом входе (выходе) двоичная переменная имеет значение логической 1, когда сигнал на этом входе (выходе) имеет значение, принятое за 1. На инверсном входе (выходе) двоичная переменная имеет значение 1, когда уровень сигнала на этом входе (выходе) соответствует состоянию, принятому за 0.
На логические входы можно подавать постоянные логические уровни 1 и 0 (константа 1 и константа 0) согласно законам универсального и нулевого множества. Входы, равноценные в логическом отношении (которые можно менять местами без ущерба для выполняемой функции), допускают объединение по закону повторения; при этом они действуют как один вход.
На принципиальных схемах логические элементы согласно ГОСТ 2.743—82 «Обозначения условные графические в схемах. Элементы цифровой техники» изображают прямоугольником (так называемое основное поле), в верхней части которого указывают символ функции: & для И, 1 для ИЛИ. Входы показывают с левой стороны прямоугольника, выходы — с правой. Допускается другая ориентация прямоугольника, при которой входы располагают сверху, а выходы снизу. Инверсные входы и выходы выделяются индикатором логического отношения — небольшим кружком у вывода. Выводы питания и общий обычно не показывают. Это обстоятельство всегда следует иметь в виду при разборе прохождения токов на входах и выходах микросхем. Когда это нужно, шины, не несущие логической информации (в том числе питания и общие), подводят к левой или правой стороне прямоугольника и помечают звездочкой.
Логические элементы
Логическим элементом называют электронное устройство, реализующее одну из логических функций. На принципиальной схеме логический элемент изображают в виде прямоугольника, внутри которого стоит указатель реализуемой функции. С левой стороны прямоугольника показывают входы, с правой - выходы элемента. Инверсные входы или выходы обозначают в виде кружков. На рис. 1.3 изображены основные логические элементы, используемые в цифровых устройствах.
Рис. 1.3. Графические обозначения логических элементов
При изготовлении интегральных схем (ИС) применяют различные конструктивно-технологические и схемотехнические решения. В связи с этим существуют логические элементы следующих типов: транзисторно-транзисторной логики (ТТЛ), транзисторно-транзисторной логики с диодами Шотки (ТТЛШ), интегрально-инжекционной логики (И2Л), эмиттерно-связанной логики (ЭСЛ), логики на комплиментарных (дополнительных) полевых транзисторах со структурой металл-оксид-полупроводник (КМОПТЛ) и др. Интегральные схемы выпускают сериями. Основой каждой серии цифровых микросхем является базовый логический элемент. Микросхемы, входящие в состав каждой серии, имеют единое конструктивно-технологическое исполнение, единое напряжение питания, одинаковые уровни сигналов логического <0> и логической <1>. Все это делает микросхемы одной серии совместимыми.
Параметры микросхем
Каждая цифровая микросхема обладает не только переключательными, но и другими свойствами и оценивается рядом параметров, обусловленных внутренней структурой и конструктивным исполнением. Некоторые из этих параметров касаются конкретной микросхемы, другие характеризуют все изделия данной серии. Если в условиях эксплуатации эти параметры будут выдержаны, завод-изготовитель гарантирует нормальную работу микросхемы. Значения параметров, как правило, задаются с запасом и не исчерпывают физических возможностей микросхемы, однако превышать их не следует, особенно те, от которых зависят работоспособность и надежность приборов.
Оценивают микросхемы по следующим основным параметрам: быстродействию, напряжению питания, потребляемой мощности, коэффициенту разветвления по выходу, коэффициенту объединения по входу, помехоустойчивости, энергии (работе) переключения, надежности, стойкости к климатическим и механическим воздействиям.
Быстродействие характеризуется максимальной частотой смены входных сигналов, при которой еще не нарушается нормальное функционирование. Это один из важнейших параметров, так как определяет время обработки информации.
Инерционность полупроводниковых приборов и паразитные емкости служат причиной того, что каждое переключение сопровождается переходными процессами, отчего фронты импульсов растягиваются. Когда частота смены входных сигналов невелика, можно считать, что переключение происходит мгновенно, а при повышенных частотах приходится считаться с искажениями импульсов. Фронты искаженных прямоугольных импульсов представляют собой участки кривых, но для простоты их принято заменять отрезками прямых.
Для оценки временных свойств микросхем существует несколько параметров. На практике обычно пользуются так называемой задержкой распространения сигнала, которая представляет собой интервал времени между входным и выходным импульсами, измеренными на уровне 0,5. Времена задержки распространения сигнала при включении и при выключении близки, но не равны. Обычно пользуются усредненным параметром
(1.4)
который называют средним временем задержки распространения (рис. 1.13).
Иногда пользуются близкими параметрами — временем задержки включения и выключения . Они измеряются на уровнях 0,1 и 0,9 соответственно.
Применительно к последовательностным устройствам (триггерам, счетчикам и др.) используются некоторые дополнительные временные параметры, обусловленные принципом действия, как то: время задержки переключения, максимальная частота переключений и некоторые другие.
Рис. 1.13. Оценка задержки сигналов: а – входной импульс;
б – выходной импульс с инверсией; в – выходной импульс без инверсии
Занятие 4
Содержание: Генераторы. Генераторы гармонических колебаний. Принцип работы генератора гармонических колебаний. Генераторы LC-типа. Генераторы прямоугольных колебаний (мультивибраторы). Мультивибраторы на транзисторах. Мультивибраторы на основе цифровых интегральных схем.
Задание к практическому занятию:
1. Составить логическую схему базы знаний по содержанию блока.
2. Составить терминологический словарь.
3. Выполнить все пункты, перечисленные в разделе подготовительного этапа к практическому занятию.
Практическое занятие (деловая игра)
Цели: 1. Закрепить и углубить изучаемый материал студентами.
2. Уметь изложить свою точку зрения по вопросам обработки, хранения и передачи информации.
Участники: Студенты распределены на 3 подгруппы:
1-я подгруппа – заказчики (задающие вопросы);
2-я подгруппа – специалисты (отвечающие на вопросы);
3-я подгруппа – экспертная группа (оценивающие правильность формулировки вопросов и ответов на них).
Время: 90 минут.
1. Подготовительный этап (домашняя работа):
1. Подготовить материл по ранее выданной на текущее занятие (в конце предыдущего занятия) преподавателем теме:
- составить план блока;
- составить терминологический словарь: выписать встречаемые в тексте блока термины и дать им расшифровку;
2. По содержанию блока составить до десяти вопросов.
3. Быть готовыми ответить на вопросы по рассматриваемой теме. Уметь оценить вопросы и ответы участников будучи в подгруппе экспертов.
4. Оформить домашнюю работу в виде отчета.