Условия наблюдения интерференции

Рассмотрим несколько характерных случаев:1. Ортогональность поляризаций волн.

При этом Условия наблюдения интерференции - student2.ru и Условия наблюдения интерференции - student2.ru . Интерференционные полосы отсутствуют, а контраст равен 0. Далее, без потери общности, можно положить, что поляризации волн одинаковы.

2. В случае равенства частот волн Условия наблюдения интерференции - student2.ru и контраст полос не зависит от времени экспозиции Условия наблюдения интерференции - student2.ru .

3. В случае Условия наблюдения интерференции - student2.ru значение функции Условия наблюдения интерференции - student2.ru и интерференционная картина не наблюдается. Контраст полос, как и в случае ортогональных поляризаций, равен 0

4. В случае Условия наблюдения интерференции - student2.ru контраст полос существенным образом зависит от разности частот и времени экспозиции.

Применение интерференции света: Явление интерференции волн находит разнообразное применение. Рассмотрим лишь некоторые примеры применения интерференции.

· Тот факт, что расположение интерференционных полос зависит от длины волны и разности хода лучей, позволяет по виду интерференционной картины (или их смещению) проводить точные измерения расстояний при известной длине волны или, наоборот, определять спектр интерферирующих волн (интерференционная спектроскопия). Для осуществления таких измерений разработаны различные схемы высокоточных измерительных приборов, называемых интерферометрами (двух- и многолучевые) (рис. 8.9). Незначительное перемещение одного из зеркал интерферометра приводит к смещению интерференционной картины, что можно использовать для измерения длин с точностью до Условия наблюдения интерференции - student2.ru . Измерения с помощью интерферометра Майкельсона привели к фундаментальным изменениям представлений о пространстве и времени. Доказали отсутствие эфира. Послужили основой специальной теории относительности.

· По интерференционной картине можно выявлятьи измерять неоднородности среды (в т.ч. фазовые), в которой распространяются волны, или отклонения формы поверхности от заданной.

· Явление интерференции волн, рассеянных от некоторого объекта (или прошедших через него) с «опорной» волной, лежит в основе голографии (в т.ч. оптической, акустической или СВЧ-голографии).

· Интерференционные волны от отдельных «элементарных» излучателей используются при создании сложных излучающих систем (антенн) для электромагнитных и акустических волн.

51. Дифракция -волн, явления, наблюдаемые при прохождении волн мимо края препятствия, связанные с отклонением волн от прямолинейного распространения при взаимодействии с препятствием.

Дифракция - огибание светом препятствий, что обусловливается интерференцией вторичных волн, появляющихся на краю препятствий. Условия появления дифракционной картины - если характерная длина волны примерно равна длине локальной неоднородности. Например, примерно равна длине дифракционной щели. В соответствии с законами геометрической оптики, при попадании луча света в щель экрана за щелью на любом расстоянии также образуется параллельный пучок света, который будет иметь одну и ту же ширину, равную ширине щели. Это справедливо в случае длины волны, значительно меньшей размеров неоднородностей. Формульно это выражается в p = sqrt(h*z)/a<<1, где р - волновой параметр. Но если есть зона Френеля, волновой параметр которой примерно соответствует единице, то тогда наблюдается искажение поперечного распределения амплитуды. Пучок расширяется. Это уже является следствием интерференции вторичных волн. При наличии зоны Фраунгофера, волновой параметр которой значительно больше единицы, изначальный пучок становится расходящуюся сферическую волну. Размытие дифракционных полос обусловливается наложением вторичных волн друг на друга (частичной интерференцией).

Явление дифракции.Дифракция волн заключается в огибании волнами препятствий или в отклонении волн в область геометрической тени при прохождении через отверстия при условии, что линейные размеры этих препятствий порядка или меньше длины волны. Тип волн не имеет значения: дифракция наблюдается и для звука, и для света, и для любых других волновых процессов.Наблюдение дифракции световых волн возможно только тогда, когда размеры препятствий будут порядка 10-6-10-7 м (для видимого света). Когда размеры щели сравниваются по порядку с длиной волны, щель становится источником вторичных сферических волн, интерференция которых и определяет картину распределения интенсивности за щелью. В частности, свет проникает в геометрически недоступную область. Таким образом, в видимой области спектра наблюдать дифракцию нелегко. Для электромагнитных волн в других диапазонах дифракция наблюдается повседневно, везде и всюду, так как, если бы не это явление, мы не смогли бы, например, слушать радио в закрытых помещениях.

Дифракционная решеткапредставляет собой совокупность большого числа очень узких щелей, разде.пенных непрозрачными промежутками (рис. 8.58). Хорошую решетку изготовляют с помощью специальной делительной машины, наносящей на стеклянную пластину параллельные штрихи. Число штрихов доходит до нескольких тысяч на 1 мм; общее число штрихов превышает 100 000. Просты в изготовлении желатиновые отпечатки с такой решетки, зажатые между двумя стеклянными пластинами. Наилучшими качествами обладают так называемые отражательные решетки. Они представляют собой чередующиеся участки, отражающие свет и рассеивающие его. Рассеивающие свет штрихи наносятся резцом на отшлифованную металлическую пластину. Если ширина прозрачных щелей (или отражающих свет полос) равна а, и ширина непрозрачных промежутков (или рассеивающих свет полос) равна b, то величина d = а + b называется периодом решетки. Обычно период дифракционной решетки порядка 10 мкм.

52. Свойство электромагнитных излучений: Их свойства различны. И зависят эти свойства от длины волны излучения. Длина волны света очень мала, и привычные для нас единицы измерения не подойдут. Часто в отношение к электромагнитному излучению используют единицу, называемую Ангстремом (В физике сокращенно обозначается буквой А с кружочком вверху. Мы на этих страницах обойдемся без кружочка, так как о силе тока, измеряемой в Амперах, которые действительно обозначаются буквой А без всяких кружочков, говорить не станем). Один Ангстрем равен десятимиллионной доле миллиметра.

Исследования, проводившиеся в самых разнообразных областях физики, позволили установить, что диапазон частот (или длин волн) электромагнитных волн чрезвычайно широк. Из теории Максвелла следует, что различные электромагнитные волны, в том числе и световые, имеют общую природу. Поэтому их удобно представить в виде единой шкалы, имеющей диапазон частот от нескольких герц до 1022 Гц, что соответствует длинам волн от тысяч километров до 10-14 м. Исключительным успехом электромагнитной теории Максвелла явилось создание шкалы электромагнитных волн. Вдоль шкалы слева направо не-прерывно возрастает одна величина — частота (уменьшается длина волны), а ее увеличение приводит к появлению качественно различных излучений. В виду огромного различия длин волн эта шкала построена в логарифмическом масштабе: метки на шкале соответствуют длинам, каждая из которых отличается в 10 раз от соседней. На шкале указаны участки длин волн (или Условия наблюдения интерференции - student2.ru ), занимаемые различными типами электромагнитных волн. Распределение электромагнитных волн по типам сделано в соответствии со способами их генерации. С изменением длины электромагнитных волн изменяется и их взаимодействие с веществом, поэтому методы их регистрации и изучения различны.

53. Квантовая природа излучения

Тепловое излучение и его характеристики:Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких — преимущественно длинные (инфракрасные).Тепловое излучение — практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой. С течением времени, в результате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела — мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

Условия наблюдения интерференции - student2.ru

где d Условия наблюдения интерференции - student2.ru — энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от n до n+dn.Единица спектральной плотности энергетической светимости (Rn,T) — джоуль на метр в квадрате (Дж/м2).

Фото́н—элементарная частица, квант электромагнитного излучения (в узком смысле — света).

Энергия фотона — это энергия элементарной частицы (фотона), квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света.

Условия наблюдения интерференции - student2.ru

Таким образом энергия фотона увеличивается с ростом частоты (или с уменьшением длины волны), например, фотон фиолетового света (0.38 мкм) имеет большую энергию, чем фотон красного света (0.77 мкм).

Так же фотон имеет:

Массу фотона: Условия наблюдения интерференции - student2.ru

Импульс фотона: Условия наблюдения интерференции - student2.ru

В формуле мы использовали :

Условия наблюдения интерференции - student2.ru — Энергия фотона

Условия наблюдения интерференции - student2.ru — Постоянная Планка

Условия наблюдения интерференции - student2.ru — Частота волны

Условия наблюдения интерференции - student2.ru — Скорость света в вакууме

Условия наблюдения интерференции - student2.ru — Длина волны

Условия наблюдения интерференции - student2.ru — Масса фотона

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства.

54. Фотоэффект-испускание электронов телами под действием света, который был открыт в 1887 г. Герценом.

Опыт столетова:«Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)» [4, с. 193].

Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов. В опытах ученый менял знак заряда на металлической пластине с отрицательного на положительный, на пути световых лучей помещал непрозрачный экран (пластинку из картона, металла и др.), стеклянную пластинку. При этих производимых друг за другом исследованиях фотоэффект не наблюдался. Экраны из кварца, льда вследствие поглощения длинноволновой части излучения только ослабляли наблюдаемый эффект. Отсюда ученый делает вывод, что фотоэффект вызывается главным образом ультрафиолетовыми лучами. При прочих равных условиях фототок возрастал при зачистке поверхности отрицательного электрода и повышении его температуры. Для изучения зависимости фотоэффекта от освещенности поверхности электрода Столетов использовал метод прерывистого освещения. К описанной ранее экспериментальной установке был добавлен картонный круг с вырезанными окошками. Круг помещался между источником света S и конденсатором G. Площади окошек и промежутков между ними были одинаковы. Когда круг приводился во вращение (скорость вращения можно было изменять), на конденсатор падало наполовину меньше света, чем при неподвижном круге. При этом сила фототока также уменьшалась в два раза. Следовательно, сила фототока прямо пропорциональна величине светового потока. Такой же результат ученый получил, изменяя площадь освещаемой части отрицательной пластины. Эксперименты, кроме того, позволили установить, что световые лучи действуют мгновенно: фототок возникал и прекращался практически одновременно с началом и прекращением освещения конденсатора. Увеличение напряжения вело к возрастанию силы фототока до определенного значения (ток насыщения), затем он оставался постоянным.

Законы Фотоэффекта: А.Г. Столетов установил три закона фотоэффекта, не утратившие своего значения и в настоящее время. В современном виде законы внешнего фотоэффекта формулируются следующим образом:

I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света(сила тока насыщения пропорциональна энергетической освещенности Ee катода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ν.

III. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота Условия наблюдения интерференции - student2.ru света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны, в металле возникают колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл, – тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого электрона из металла должна была бы зависеть от интенсивности падающего света, т.к. с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Т.к., по волновой теории, энергия, передаваемая электроном, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория фотоэффекта не смогла объяснить безынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

Применение: Фотоэлементы, действие которых основано на внешнем фотоэффекте, преобразуют в электрическую энергию лишь незначительную часть энергии излучения. Поэтому в качестве источников электроэнергии их не используют, зато широко применяют в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

55. История развития взглядов на природу света

Первые представления о природе света были заложены в глубокой древности. Греческий философ Платон (427–327 гг до н.э.) создал одну из первых теорий света.Евклид и Аристотель (300–250 гг до н.э.) опытным путем установили такие основные законы оптических явлений, как прямолинейное распространение света и независимость световых пучков, отражение и преломление. Аристотель впервые объяснил сущность зрения.Несмотря на то, что теоретические положения древних философов, а позднее и ученых средних веков, были недостаточными и противоречивыми, они способствовали формированию правильных взглядов на сущность световых явлений и положили начало дальнейшему развития теории света и созданию разнообразных оптических приборов. По мере накопления новых исследований о свойствах световых явлений изменилась точка зрения на природу света. Ученые считают, что историю изучения природы света следует начинать с XVII века. В XVII веке датский астроном Ремер (1644–1710) измерил скорость распространения света, итальянский физик Гримальди (1618–1663) открыл явление дифракции, гениальный английский ученый И.Ньютон (1642–1727) развил корпускулярную теорию света, открыл явления дисперсии и интерференции, Э.Бартолин (1625–1698) обнаружил двойное лучепреломление в исландском шпате, заложив тем самым основы кристаллооптики. Гюйгенс (1629–1695) положил начало волновой теории света. В XVII веке делаются первые попытки теоретического обоснования наблюдаемых световых явлений. Корпускулярная теория света, развитая Ньютоном, состоит в том, что световое излучение рассматривается как непрерывный поток мельчайших частиц – корпускул, которые испускаются источником света и с большой скоростью летят в однородной среде прямолинейно и равномерно. С точки зрения волновой теории света, основоположником которой является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде – эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.Электромагнитная теория света была создана в середине XIX века Максвеллом (1831–1879). Согласно этой теории световые волны имеют электромагнитную природу, а световое излучение можно рассматривать как частный случай электромагнитных явлений. Исследования Герца и в дальнейшем П.Н.Лебедева также подтвердили, что все основные свойства электромагнитных волн совпадают со свойствами световых волн. Лоренц (1896) установил взаимосвязь между излучением и структурой вещества и развил электронную теорию света, согласно которой входящие в состав атомов электроны могут совершать колебания с известным периодом и при определенных условиях поглощать или испускать свет.Электромагнитная теория Максвелла в сочетании с электронной теорией Лоренса объясняла все известные тогда оптические явления и, казалась полностью раскрывала проблему природы света. Световые излучения рассматривались как периодические колебания электрической и магнитной силы, распространяющейся в пространстве со скоростью 300000 километров в секунду. Лоренс полагал, что носитель этих колебаний – электромагнитный эфир, обладает свойствами абсолютной неподвижности. Однако созданная электромагнитная теория вскоре оказалась несостоятельной. Прежде всего эта теория не учитывала свойства реальной среды в которой распространяются электромагнитные колебания. Кроме того, с помощью этой теории нельзя было объяснить ряд оптических явлений, с которыми столкнулась физика на рубеже XIX и XX веков. К таким явления относятся процессы излучения и поглощения света, излучение абсолютно черного тела, фотоэлектрический эффект и другие. Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Согласно этой теории, световое излучение испускается и поглощается частицами вещества не непрерывно, а дискретно, то есть отдельными порциями – квантами света. Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.В результате исторического развития современная оптика располагает обоснованной теорией световых явлений, которая может объяснить различные свойства излучений и позволяет ответить на вопрос о том, в каких условиях те или иные свойства световых излучений могут проявляться. Современная теория света подтверждает его двойственную природу: волновую и корпускулярную.

56. Модель атома резерфорда: Рассеяние отдельных α-частиц на большие углы Резерфорд объяснил тем, что положительный заряд в атоме не распределен равномерно в шаре радиусом 10-10м, как предполагали ранее, а сосредоточен в центральной части атома (атомном ядре) в области значительно меньших размеров. Расчеты Резерфорда показали, что для объяснения опытов по рассеянию α-частиц нужно принять радиус атомного ядра равным примерно 10-15м.Резерфорд предположил, что атом устроен подобно планетарной системе. Как вокруг Солнца на больших расстояниях от него обращаются планеты, так электроны в атоме обращаются вокруг атомного ядра. Радиус круговой орбиты самого далекого от ядра электрона и есть радиус атома. Такая модель атома была названа планетарной моделью.Планетарная модель атома объясняет основные закономерности рассеяния заряженных частиц.Так как большая часть пространства в атоме между атомным ядром и обращающимися вокруг него электронами пуста, быстро заряженные частицы могут почти свободно проникать через довольно значительные слои вещества, содержащие несколько тысяч слоев атомов.При столкновениях с отдельными электронами быстрые заряженные частицы испытывают рассеяние на очень большие углы, так как масса электрона мала. Однако в тех редких случаях, когда быстрая заряженная частица пролетает на очень близком расстоянии от одного из атомных ядер, под действием силы электрического поля атомного ядра может произойти рассеяние заряженной частицы на любой угол до 180°.

Теория БОРА: Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885--1962). Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ящерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.

Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющие условию

Условия наблюдения интерференции - student2.ru

где т, - масса электрона, v - его скорость по n-й орбите радиуса rn, ℏ = h/(2p).Второй постулат Бора (правило частот): при переходе электрона с одной стационар ной орбиты на другую излучается (поглощается) один фотон с энергией Условия наблюдения интерференции - student2.ru

равной разности энергий соответствующих стационарных состоянии (Еn и Еm - соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При Ет<Еп происходит излучение фотона (переход атома из состояния с боль шей энергией в состояние с меньшей энергией, т. с. переход электрона с более удален ной от ядра орбиты на более близлежащую), при Ет>Еn- его поглощение (переход атома в состояние с большей энергией, т. е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот v = (Еn – Еm)/h квантовых переходов и определяет линейчатый спектр атома.

57. Существует три основных источника естественной радиоактивности:

1. Космическое излучение и солнечная радиация. От этого вида радиации у нас есть надежный защитник — магнитосфера. Но интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому рекомендуется избегать воздействия прямых солнечных лучей.Вспышки на солнце — один из источников естественного радиационного фона.Ученые отмечают, что именно с влиянием космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более10 ООО м. Обычным гражданам, совершающим перелеты нечасто, не стоит волноваться о космическом излучении. Уровень радиации в салоне самолета на высоте 10 ООО м превышает естественный в 10 раз.Нет такого места на Земле, куда бы ни падали космические лучи. Но одни участки земной поверхности более подвержены его действию, чем другие. Северный и Южный полюсы получают больше палиании. чем экватопиальные области. Это связано с наличием у Земли магнитного поля, отклоняющего космические лучи. Уровень облучения возрастает с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана.Люди, живущие на уровне моря, из-за космических лучей эффективную эквивалентную дозу около 300 микрозивертов в год; для людей же, живущих выше 2000 м над уровнем моря, это величина в несколько раз больше.

2. Излучение земной коры. В поверхности нашей планеты содержится много минералов, хранящих следы радиоактивного прошлого Земли. Например, это гранит и глинозем. Они представляют опасность лишь вблизи месторождений. Однако человеческая деятельность ведет к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов. В атмосферу —- в результате сжигания угля. На приусадебный участок — в виде фосфорных удобрений, а затем и на стол в продуктах питания. Кстати, в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон местности, в которой они находятся. Таким образом, хоть здание и может уберечь нас от космического излучения, но естественный фон может быть завышен всвязи с использованием опасных материалов.

3. Радон — это радиоактивный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство накапливаться под землей в больших количествах. На поверхность выходит при добыче полезных ископаемых или через трещины в земной коре. Он поступает в наши дома с бытовым газом, водопроводной водой (особенно, если она добыта из очень глубоких скважин), просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа будет равна нулю.

Излучения: a-, b- и g-излучения сильно отличаются друг от друга по свойствам, в частности по способности проникать сквозь вещество. Для исследования проникающей способности радиоактивного излучения можно использовать тот же прибор (рис. 377, в). Будем помещать между препаратом 1 и щелью экраны возрастающей толщины, производить снимки в присутствии магнитного поля и отмечать, начиная с какой толщины экрана исчезнут следы лучей каждого рода.Оказывается, первым исчезает след a-частиц. a-частицы полностью поглощаются уже листом бумаги толщины около 0,1 мм (рис. 377, в; 378, а). Поток b-частиц постепенно ослабляется с увеличением толщины экрана и поглощается полностью при толщине алюминиевого экрана в несколько миллиметров (рис. 378, б). Наиболее проникающим является g-излучение. Слой алюминия толщины 1 см почти не ослабляет интенсивности g-излучения. Вещества с большим атомным номером обладают значительно большим поглощающим действием для g-излучения; в этом отношении g-излучение сходно с рентгеновским. Так, 1 см свинца (Z=82) ослабляет пучок g-излучения примерно в два раза (рис. 378, в).Различие в свойствах a-, b- и g-излучений наглядно проявляется в так называемой камере Вильсона — приборе для наблюдения путей быстрых заряженных частиц. Камера Вильсона (рис. 379) представляет собой стеклянный

Пусть пар в камере находится в состоянии пересыщения. Быстрая заряженная частица, пролетая через камеру, оставляет на своем пути цепочку ионов. На каждом ионе оседает капелька, и траектория частицы становится видимой в виде туманного следа.

Длина следов a-частиц в воздухе при атмосферном давлении составляет около 5 см и много меньше длины следов.Отметим в заключение, что большинство радиоактивных веществ излучает только один род частиц — либо a-частицы, либо b-частицы. Испускание частиц часто (но не всегда) сопровождается испусканием g -излучения.

Закон радиоактивного распада:Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

58. Состав атомного ядра: Благодаря новым методам регистрации радиоактивности стало возможным изучать новые явления, которые раньше не поддавались исследованию, и, в частности, попытаться ответить на вопрос, как устроено атомное ядро. Для ответа на этот вопрос Резерфорд решил использовать столкновение α-частиц с ядрами легких химических элементов. Обстреливая α-частицами атомы водорода, Резерфорд обнаружил что нейтральные атомы водорода превращаются в положительно заряженные частицы. Резерфорду было известно, что легчайший атом Периодической системы водород состоит из ядра, имеющего единичный положительный заряд, и электрона. Следовательно, при столкновении с атомом водорода α-частица подходила достаточно близко к ядру водорода и передавала ему часть энергии и импульса. Резерфорд назвал эти положительно заряженные частицы H атомами. Позже за ними укрепилось название «протоны». Одновременно Резерфорд установил, что взаимодействие между α-частицей и ядром водорода не подчиняется обнаруженному им ранее закону рассеяния α частиц на ядрах золота. При сближении α-частицы с ядром водорода силы взаимодействия между α-частицей и ядром водорода резко возрастали.

НУКЛОН общее название протона и нейтрона - частиц, из которых состоят ядра атомов.

Изото́пы— разновидности атомов (и ядер) одного химического элемента с разным количеством нейтронов в ядре.

Ядерные силы – это силы притяжения, которые удерживают нуклоны (протоны и нейтроны) внутри ядра. Ядерные силы – это не электрические силы, так как они действуют не только между заряженными протонами, но и между незаряженными нейтронами.

Дефе́кт ма́ссы — разность между массой покоя атомного ядра данного изотопа, выраженной в атомных единицах массы, и массовым числом данного изотопа.

Под энергией связи атомного ядра понимают энергию, которую нужно затратить, чтобы расщепить ядро на отдельные нуклоны. Такая же энергия выделяется при образовании ядра из свободных нуклонов.

59. Деление атомных ядер может быть вызвано различными частицами, однако практически наиболее выгодно использовать для этой цели нейтроны. Отсутствие кулоновского отталкивания позволяет нейтронам со сколь угодно малой кинетической энергией приблизиться к ядру на расстояние меньше радиуса действия ядерных сил. Захват ядром нейтрона приводит к возбуждению ядра, и, если энергия возбуждения достаточна, происходит деление. Величина сечения деления Условия наблюдения интерференции - student2.ru дел всегда меньше величины сечения захвата Условия наблюдения интерференции - student2.ru захв, так как существуют другие каналы распада возбужденных ядер.

Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k ³ 1.Оказывается, что не все образующиеся вторичные нейтроны вызывают последующее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит цепная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа — от его количества, а также размеров и формы активной зоны. Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называются критическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакция, называется критической массой.

Скорость развития цепных реакций различна. Пусть Т — среднее время жизни одного поколения, а N — число нейтронов в данном поколении. В следующем поколении их число равно kN, т. е. прирост числа нейтронов за одно поколение dN = kN—N = N(k—1). Прирост же числа нейтронов за единицу времени, т. е. скорость нарастания цепной реакции, Условия наблюдения интерференции - student2.ru Интегрируя (266.1), получим Условия наблюдения интерференции - student2.ru где N0 — число нейтронов в начальный момент времени, а N — их число в момент времени t. N определяется знаком (k—1). При k>1 идет развивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k=1 идет самоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяется. При k<1 идет затухающая реакция.

Принцип работы ядерного реактора . Внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия, циркулируя через активную зону реактора и омывая топливные элементы, твэлы, вода нагревается до 320 градусов.Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней. Что исключает попадание радиоактивных веществ за пределы реакторного зала.А далее все как на обычной теплоэлектростанции. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор. Он то и вырабатывает электрический ток.

60. Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые. Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний ~ 10-15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами. Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания. При таких температурах вещество существует в виде плазмы. Поскольку синтез может происходить только при очень высоких температурах, ядерные реакции синтеза и получили название термоядерных реакций (от греч. therme "тепло, жар").

Наши рекомендации