Определение перемещений с помощью интеграла Мора с использованием правила Верещагина
Для определения горизонтального перемещения рамы в сечении 1(сечение D) , выбираем единичное состояние – освободив раму от заданной нагрузки, прикладываем в сечении D сосредоточенную силу =1, направленную горизонтально (рис.39а).
Рис.39. Эпюра изгибающих моментов от единичной сосредоточенной силы
Определение опорных реакций. Составляем три уравнения статики (рис.39a):
S Fx =0:
S MA =0:
S MB=0: RA =
Проверка S Fz =0? RA + RB= – 0, 75 + 0, 75 = 0.
Значения изгибающих моментов.
Участок AC: ;
Участок BD: ;
Поскольку участки CD и CE вертикальные разворачиваем раму на 900 по ходу часовой стрелки.
Участок CD: ;
Участок CE: M ≡ 0.
Строим эпюру от единичного воздействия (рис.39б) и, не забываем проверить равновесие узлов C и D .
Горизонтальное перемещение рамы в сечении 1 по формуле Мора
v1=
Рис.40.Перемножение эпюр |
На участке АС (рис.40) площадь эпюры: .
Ордината в эпюре под центром тяжести равна: ; поэтому .
Такой же результат получится и для участка BD: .
Эпюру от заданной нагрузки МР на участке CD, который развернем походу часовой стрелки, разбиваем на два треугольника и симметричную параболу, а эпюру – на два треугольника (рис.41).
Площади этих эпюр: ; .
Ординаты в эпюре под центрами тяжести соответственно равны: ; ; ; ; ; поэтому
Рис.41. Разбиение сложных эпюр на простые эпюры. Перемножение эпюр
т.к. J2= J1/3.
Таким образом, горизонтального перемещения рамы в сечении 1
v1=
Отрицательное значение перемещения в сечении 1показывает, что рама в сечении 1 перемещается в направлении противоположном направлению единичной силы.
Для определения угла поворота рамы в сечении 2(сечение E) , выбираем единичное состояние – освободив раму от заданной нагрузки, прикладываем в сечении E сосредоточенный момент =1, направленный по ходу часовой стрелки (рис.42а).
Определение опорных реакций. Составляем три уравнения статики:
S Fx =0:
S MA =0:
S MB=0: RA =
Проверка S Fz =0? RA + RB = – 0, 25 + 0, 25 = 0.
Рис.42.Эпюра изгибающих моментов от единичного сосредоточенного момента
Значения изгибающих моментов.
Участок AC: ;
Участок BD: ;
Поскольку участки CD и CE вертикальные разворачиваем раму на 900 по ходу часовой стрелки.
Участок CD: ;
Участок CE: M ≡ =1.
Строим эпюру от единичного воздействия (рис.42б).
Интеграл Мора
j2= .
На участке АС (рис.32б) площадь эпюры: .
Ордината в эпюре под центром тяжести равна: ; поэтому .
Такой же результат получится и для участка BD: .
Эпюру от заданной нагрузки МР на участке CD, который развернем походу часовой стрелки, разбиваем на два треугольника и симметричную параболу, как это было сделано выше (рис.41).
Площади этих эпюр: ; ; .
Ординаты в эпюре под центрами тяжести равны ; поэтому
,
т.к. J2= J1/3.
На участке CE (рис.33б) площадь эпюры: , а ордината в эпюре под центром тяжести равна ; поэтому , т.к. J2= J1/3.
Таким образом, угол поворота рамы в сечении 2(сечение E)
j2 = .
Отрицательное значение угла поворота рамы в сечении 2показывает, что сечение 2 поворачивается против хода часовой стрелки, т.е. в направлении противоположном направлению единичного момента.
Литература:
1. Дарков А. В. Строительная механика / А. В. Дарков, Н. Н. Шапошников. - СПб. : Издательство Лань, 2005. - 656 с.
2. Снитко Н. К. Строительная механика./ Н. К. Снитко – М. : Высшая школа, 1992. – 486 с.
3. Киселёв В. А. Строительная механика / В. А. Киселёв. - М. : Стройиздат, 1976. - 512 с.