Космология. Элементы физики Мегамира

Выделив в структурных уровнях материи гипермир (см. лекцию 4; 4.2), как представление о множестве мегамиров, мы фактически задали мегамир, как взаимодействующую и развивающую систему с усложнением фрактальной структуры «стрел времени» от Большого взрыва до образования космических тел, доступную современным методам исследования всех форм материи, в нее входящих, а также их взаимодействий (см. схему 45).

Схема 45. Структура Мегамира.

Мегамир (космос) Системная организация коэволюции материи, фундаментальных взаимодействий и пространства-времени на основе астрофизических, космологических и космогонических теорий и экспериментальных (астрономических) исследований.

1. Космология. Элементы физики Мегамира - student2.ru Обычная материя – 4-5% всей материи в Мегамире (во Вселенной)

2. Темная материя – 23% всей материи в Мегамире (во Вселенной)

3. Темная энергия (энергия вакуума или космологическая постоянная) – 73% всей материи в Мегамире (во Вселенной).

4. Нейтрино.

Космология. Элементы физики Мегамира - student2.ru Космология. Элементы физики Мегамира - student2.ru

В рамках выделения Мегамира, как возможно одной из частей Гипермира, мы под Вселенной будем понимать объект космологии Мегамира, т.е. ту часть материального мира, которая на данном уровне познания доступна астрономическому (наблюдательному и теоретическому) исследованию.

Итак, космология – это наука, целью которой является изучение и представление о Вселенной как едином целом.

Космогония – наука, изучающая происхождение небесных тел и систем от Солнечной системы до звезд, галактик и скоплений галактик.

Для наглядного модельного представления о масштабах нашей Галактики и Метагалактики представим их схематически (см. схему 46) с указанием удаления некоторых космических объектов от Солнца. Масштаб соответствующей модели: Космология. Элементы физики Мегамира - student2.ru м (боровский радиус): Космология. Элементы физики Мегамира - student2.ru м (радиус Земной орбиты) = Космология. Элементы физики Мегамира - student2.ru . При этом Вселенная в рамках Метагалактики включает в себя Космология. Элементы физики Мегамира - student2.ru ÷ Космология. Элементы физики Мегамира - student2.ru Галактик, в каждой из которой находится 1011 звезд.

Схема 46. Модель Галактики и Метагалактики

ГАЛАКТИКА (Млечный путь – звездная система, содержащая до 1011 звезд, к которой принадлежит Солнечная система) МЕТАГАЛАКТИКА (изученная часть Вселенной со всеми находящимися в ней галактиками и другими объектами)
Космология. Элементы физики Мегамира - student2.ru
Масштаб: Земная орбита = внутренней орбите атома водорода в модели Бора   модели Бора (радиус этой орбиты равен 0,53·10-8 см)

Галактика в этом масштабе:

v Расстояние до ближайшей звезды Проксима 0,014 мм;

v Расстояние до центра Галактики около 10 см;

Размеры нашей звездной системы будут около 35 см;

v Диаметр Солнца будет 0,0046 Å

(ангстрем – единица длины, равная 10-8 см).

Метагалактика в этом масштабе: v Расстояние до туманности Андромеды 6 м (реальное удаление 1,5 млн. световых лет); v Расстояние до центральной части скопления галактик в Деве, куда входит и наша местная система галактик 120 м, причем такого же порядка будет размер самого скопления (реальное удаление 50 млн. световых лет); v Расстояние до радиогалактики Лебедь-А 2,5 км; v Расстояние до радиогалактики 3С-295 25 км (реальное ее удаление 5 млрд. световых лет). Скорость удаления радиогалактики Лебедь-А – около 17 тыс. км/с, радиогалактики 3С-295 – около 138 тыс. км/с.
Космология. Элементы физики Мегамира - student2.ru Реальные размеры Галактики: диаметр – 120 тыс. световых лет, толщина 10 тыс. световых лет Космология. Элементы физики Мегамира - student2.ru Реальные размеры Метагалактики около 20 млрд. световых лет
     

Наша, наиболее важная для нас, Галактика носит название Млечный путь и состоит из более чем 100 млрд. звезд. В связи с огромными масштабами вводят новые астрономические единицы: астрономическая единица, равная среднему расстоянию от Земли до Солнца – 1 а.е.=1,50×1011м; световой год, т.е. расстояние, которое проходит свет в вакууме за один земной год – 1 св. год=6, 32×104а.е.=9,46×1015м; парсек – 1 пс. = 3,2 св. лет=2,06×105а.е.=3,09×1016м.

Время жизни нашей Вселенной и соответственно Метагалактики, т.е. то, что люди называют возрастом Вселенной, это примерно 13,7 миллиарда лет с точностью до …, пожалуй, лучше чем 10%. Размер Метагалактики, т.е. наблюдаемой части Вселенной, казалось бы можно определить, исходя из того, что свет путешествовал к нам 13,7 млрд. лет, значит это надо умножить на скорость света ( Космология. Элементы физики Мегамира - student2.ru м/с) и получится расстояние, на котором мы якобы сейчас видим объекты Вселенной. На самом деле мы видим в несколько раз дальше, чем получим в результате (около 1,6 млрд световых лет), потому что те объекты, которые послали к нам свет 13,7 млрд лет назад, они сейчас от нас находятся дальше, так как Вселенная расширяется. Реальные, т.е. наблюдаемые размеры Метагалактики около 20 млрд. световых лет.

Обычная материя практически вся сосредоточена в газовой среде и в звездах. В схеме 47 мы собрали терминологические названия основных видов звезд и соответствующие, очень краткие характеристики. При этом внутренняя жизнь звезды регулируется воздействием двух сил: силы притяжения, которая противодействует звезде, удерживает ее, и силы освобождающейся при происходящих в ядре ядерных реакциях. Она, наоборот, стремиться «вытолкнуть» звезду в дальнее пространство. Не вдаваясь в сложные механизмы эволюции, приведем схематически варианты развития звезд главной последовательности.

Схема 47. Виды звезд и их краткие характеристики.

v Красные карлики - звезды, диаметр которых в 2-3 раза меньше диаметра Солнца, их средняя плотность в 4-5 раз больше плотности Солнца.
v Белые карлики – электронные постзвезды: масса такого типа звезды порядка массы Солнца, а радиус – 0,01 радиуса Солнца. Плотность 10 г/см3
v Красные гиганты – звезды большой светимости: диаметр их в сотни раз больше диаметра Солнца; плотность в тысячи раз меньше плотности воздуха.
v Черные дыры – звезды, сжатые до величины гравитационного радиуса (радиуса сферы Шварцшильда: Космология. Элементы физики Мегамира - student2.ru , Космология. Элементы физики Мегамира - student2.ru - гравитационная постоянная, Космология. Элементы физики Мегамира - student2.ru - скорость света) – для Солнца 3 км. В них вещество находится в состоянии сингулярности (плотность выше 1074 г/см3).
v Нейтронные – звезды, состоящие из огромного сгустка нейтронов; силы гравитации разрушили в них сложные ядра, и вещество снова стало состоять из отдельных элементарных частиц. Масса их близка к массе Солнца, радиус 1/50000 от солнечного (10-30 км), плотность до 1014 г/см3.
v Пульсары – пульсирующие космические источники радио-, оптического, рентгеновского и гамма-излучений. У радиопульсаров (быстро вращающихся нейтронных звезд) периоды импульсов – 0,03-4с; у рентгеновских пульсаров (двойных звезд, где к нейтронной звезде перетекает вещество от второй, обычной звезды) периоды составляют несколько секунд и более.
v Квазары – квазизвездные источники радиоизлучения; космические объекты чрезвычайно малых угловых размеров. Отдаленность от Солнца несколько тысяч мегапарсек. Это образования окраин Вселенной. Они излучают в десятки раз больше энергии, чем самые мощные галактики. Масса ядра 103-109 масс Солнца; размеры 1016-1017 см.

При этом нас, прежде всего, интересует эволюция Солнца (см. схему 48).

Схема 48. Эволюция звезд главной последовательности (варианты развития).

Космология. Элементы физики Мегамира - student2.ru

Наше Солнце является малой звездой главной последовательности согласно классической диаграммы Герцшпрунга-Ресселла. С эволюцией Солнца взаимосвязана и эволюция Солнечной системы, модель которой приведена на схеме 49.

Схема 49. Модель Солнечной системы

Космология. Элементы физики Мегамира - student2.ru

Примечание: В 2006 г. на съезде астрономов было принято отнести планету Плутон, имеющую массу, равную 0,002 массы Земли, к астероидам.

Характерно, что из всех планет Солнечной системы только на Земле в результате ее эволюции образовалось поистине фантастическое разнообразие живых существ и самое удивительное появился биосоциокультурный вид – человек разумный (Homo sapiens).

Нам представляется, что для понимания фрактальной структуры «стрел времени», в которую естественно включаются космологическая стрела времени вплоть до образования Земли, геологическая стрела времени и биологическая стрела времени, особую роль приобретает антропный принцип.

Слабый антропный принцип утверждает, что наблюдаемые свойства Вселенной зависят от человека как наблюдателя, то есть Вселенная такая потому, что мы ее такой видим.

Сильный антропный принцип говорит, что Вселенная устроена таким образом, что в ней с неизбежностью должен был появиться человек. Такой подход фактически реанимирует антропоцентрическую идею о человеке как о цели творения. Естественно, что опираясь на концепции современного естествознания, мы непроизвольно уходим от телеогических аспектов в религиозном плане. Однако, Стивен Хокинг доказал, что направления трех базовых «стрел времени», а именно общеизвестной термодинамической (см. лекцию 5), психологической, связывающей наше восприятие времени от прошлого к будущему, и космологической совпадают, иначе не могли бы реализоваться условия для зарождения и развития разумных существ.

Очевидно, именно в этом естественнонаучном плане можно говорить и о пересечении отмеченных выше стрел времени с антропологической стрелой времени, включая в нее и антропный принцип. Именно такой подход, на наш взгляд, позволяет согласиться с математически доказанной с использованием теории струн «многоликости Вселенной», т.е. с возможностью реализации множественности Вселенных, или по нашей терминологии «многоликового» гипермира. Тогда наша наблюдаемая Вселенная отличается от гипотетических Вселенных именно реализацией в ней антропного принципа. Мы в данном параграфе ограничимся рассмотрением только космологической стрелы времени нашей наблюдаемой Вселенной (см. схему 50).

Схема 50. Основные этапы космологической шкалы («стрелы») времени.

Этапы Основные идеи и явления Обоснования Время от сегодняшнего момента
Название Кос-мическое время Тем-пера-тура (К)
v Сингулярное состояние Вселенной в пузырьковой модели и в модельной теории струн     Невозможность избежать сингулярности, т.е. «точечного» объема с бесконечно большой плотностью, в космологических моделях общей теории относительности была доказана в числе прочих теорем о сингулярности, Р. Пенроузом и С. Хокингом в конце 1960-х годов. Расширение Вселенной, открытое Э. Хабблом на основе обнаруженного им в 1929 г. «красного смещения» спектральных линий излучения от удаленных галактик.  
v .Большой взрыв в «холодной» модели А.А.Фрид-мана и в «горячей» модели Г.А. Гамова   В 1922 г., найдя нестационарные решения гравитационного уравнения А. Эйнштейна, А.А. Фридман предложил геометрические модели нестациолнарной вселенной, в рамках которых возникло предположение о начальном взрывном процессе. В 1948 г. Г.А. Гамов добавил к «холодному» взрыву очень плотной материи представление, что «первичное вещество» мира было не только очень плотным, но и очень горячим. Теория «горячей Вселенной» в сочетании с теорией Большого взрыва была подтверждена экспериментально обнаруженным в 1965 г. А. Пензиасом и Р. Вильсоном реликтового, т.е. рассеянного космического электромагнитного излучения с температурой близкой к предсказанной Г.А. Гамовым, 2,7К. Космология. Элементы физики Мегамира - student2.ru млрд. лет
v Эпоха Планка в модели гипомира, т.е. частиц (пузырьков) – планкеонов со следующими характеристиками: Космология. Элементы физики Мегамира - student2.ru м, Космология. Элементы физики Мегамира - student2.ru с, Космология. Элементы физики Мегамира - student2.ru кг/м3. 10-43 с 1032 К Наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с плотностью около 1096кг/м3. При большей плотности возникают огромные флуктуации, не позволяющие описать как сингулярность, так и то, что было до нее. Постоянство четырех фундаментальных констант: G, c, Космология. Элементы физики Мегамира - student2.ru , kБ, На основе соответствующих фундаментальных физических констант зачастую задается и физическое обоснование сильного антропного принципа. Возможно в эту эпоху существовало единое, целостное фундаментальное взаимодействие.  
v Эпоха экспоненциального расширения Вселенной с ускорением. Эпоха Большой Космической инфляции От 10-43 до 10-35 с От 1032 до 1028 К Возникает расширение Вселенной в Космология. Элементы физики Мегамира - student2.ru раз. Используется новая теория инфляционной космологии, в которой, в частности, плотность темной материи играет роль космологического члена в гравитационном уравнении А. Эйнштейна. В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий, и одно из объяснений экспоненциального расширения Вселенной – включение антигравитации темной энергии. Подтверждена измерением анизатропии реликтового излучения.  
v Эпоха бариогенеза и адронов   От 10-35 до 10-5 с   От 1028 до 1014 К Рождение и аннигиляция кварк-антикварковых пар: Космология. Элементы физики Мегамира - student2.ru ~10-9. Считается, что различие между материей и антиматерией во взаимодействии частиц наблюдалось только для кварков и антикварков. Затем произошел следующий фазовый переход, называемый бариогенезом, т.е. объединение кварков и глюонов в барионы, такие как протоны и нейтроны. Рождались и другие адроны – гипероны и мезоны. И все-таки в механизме возникновения асимметрии вещества и антивещества еще достаточно много парадоксов и загадок. Кварко-глюонная плазма фиксируется как вакуумная подсистема с характерными размерами 10-15 м уже в экспериментах на БАКе при энергиях порядка 7 ТэВ, т.е. при температурах порядка 1017 К. На БАКе также обнаружен бозон Хиггса, но с несколько искаженными по отношению к теории параметрами. Появление «лишних» нуклонов, ответственных за асимметрию между материей и антиматерией, связывают также с асимметрией распада бозона Хиггса и соответствующего ему антибозона. Ученые надеются, что, включив всю энергию БАКа (14 ТэВ), удастся исследовать подсистему с характерными размерами 10-18 м, т.е. более обоснованно экспериментально исследовать бозон Хиггса, а возможно, и темную материю.  
v Эпоха лептонов От 10-6 до 1с От 1014 до 1011 К Аннигиляция лептонно-антилептонных пар; как в кипящем котле во вселенной непрерывно рождались и исчезали адроны, лептоны и кванты фундаментальных взаимодействий. Появление реликтовых нейтрино. Происходило взаимопревращение элементарных частиц. Экспериментально подтверждено открытием в 1967 г. нейтральных токов на синхротронном ускорителе в Церне и созданием С. Вайнбергом, Ш. Глэшоу и А. Саламом теории электрослабого взаимодействия. Взаимопревращение частиц наблюдалось прежде всего при Космология. Элементы физики Мегамира - student2.ru и Космология. Элементы физики Мегамира - student2.ru распадах.  
v Эпоха термоядерных реакций От 1 с до 3 мин От 1011 до 109 К Возникают термоядерные реакции с участием протонов Космология. Элементы физики Мегамира - student2.ru и нейтронов Космология. Элементы физики Мегамира - student2.ru : Космология. Элементы физики Мегамира - student2.ru ; Космология. Элементы физики Мегамира - student2.ru ; Космология. Элементы физики Мегамира - student2.ru . Возникают примеси легких элементов, которые измерены путем наблюдения реликтового излучения. Становление первоначального химического состава вселенной: ядер водорода – 70%, ядер гелия ( Космология. Элементы физики Мегамира - student2.ru ) – 30% + плазма.  
v Эпоха перехода плазма-газ и становления прозрачной Вселенной 3×105 лет (300 тыс лет) 3×103 К Возникновение газа в основном атомарного водорода из электронно-протонной плазмы, а также за счет рекомбинации электронов и ядер. Начинает доминировать вещество, состоящее из нейтральных атомов – водорода, дейтерия и гелия с небольшой примесью молекул водорода; отделение излучения от вещества.  
v Этап формирования галактик, в том числе и нашей Галактики, включающий в себя следующие события: а) начало образования галактик; б) галактики начинают образовывать скопления; в) сжатие нашей протогалактики г) образование звезд. От 1 млрд лет до 4 млрд лет   Создание неустойчивой относительно флуктуаций плотности за счет гравитационного взаимодействия в неравновесной смеси из нейтральных атомов и фотонов. Гравитационному коллапсу (полному сжатию) препятствует вращение и внутреннее давление, причем до отделения излучения от вещества силы давления излучения превышали гравитационные. По современным представлениям, центральными объектами структуры Вселенной являются галактики, масса которых эквивалентна в среднем 100 млрд. масс Солнца. К числу таких объектов относится и наша Галактика – Млечный путь. По своим свойствам и форме большинство галактик можно разделить на два типа: спиральные и эллиптические. Критический размер и масса объекта, для которого обе силы (гравитации и давления) уравновешиваются, называются длиной и массой Джинса (по имени ученого Дж. Х. Джинса (1877-1984)). Если исходный размер тела превосходит длину Джинса, то, в конце концов должна наблюдаться его фрагментация. Если же этот размер меньше длины Джинса, то объект должен коллапсировать как целое. Образование иерархической структуры Вселенной – галактик, их скоплений с одной стороны, и звезд, шаровых скоплений, планет и т.п., с другой – обусловлено флуктуациями плотности остывающего однородного шара, имеющими различную природу. От 12,7 млрд лет до 9,7 млрд. лет
v Этап образования Солнечной системы 9,1 млрд лет 2,7К Формирование галактик сопровождалось возникновением и эволюцией звезд, среди которых наше Солнце – относительно молодая звезда как по возрасту, так и по времени рождения. При этом «старые» звезды сыграли огромную роль в происхождении химических элементов за счет термоядерных реакций, взрывов красных гигантов и «сверхновых» звезд. 4,6 млрд лет
             

Представляет очевидный интерес предсказание эволюции нашей Вселенной, Галактики – Млечный путь, Солнца и Земли в будущем.

Что касается Вселенной, то очень часто такие оценки делают на основании закона Хаббла: Космология. Элементы физики Мегамира - student2.ru , где Космология. Элементы физики Мегамира - student2.ru - постоянная Хаббла, Космология. Элементы физики Мегамира - student2.ru - расстояние между галактиками, Космология. Элементы физики Мегамира - student2.ru - скорость «разбегания» галактик.

Вычислим энергию некоторой галактики, имеющей массу Космология. Элементы физики Мегамира - student2.ru , которая находится на расстоянии Космология. Элементы физики Мегамира - student2.ru от «наблюдателя» (см. рис. 7.1). Энергия этой галактики складывается из кинетической энергии Космология. Элементы физики Мегамира - student2.ru и потенциальной энергии Космология. Элементы физики Мегамира - student2.ru , которая связана с гравитационным взаимодействием галактики Космология. Элементы физики Мегамира - student2.ru с веществом массы Космология. Элементы физики Мегамира - student2.ru , находящимся внутри шара радиуса Космология. Элементы физики Мегамира - student2.ru . Выразим массу Космология. Элементы физики Мегамира - student2.ru через плотность Космология. Элементы физики Мегамира - student2.ru , Космология. Элементы физики Мегамира - student2.ru и, учитывая закон Хаббла, запишем выражение для энергии галактики:

Космология. Элементы физики Мегамира - student2.ru Космология. Элементы физики Мегамира - student2.ru (1)

Из этого выражения найдем Космология. Элементы физики Мегамира - student2.ru , т.е. такое значение плотности при котором Космология. Элементы физики Мегамира - student2.ru , т.е. вселенная не расширяется, как при Космология. Элементы физики Мегамира - student2.ru , и не сжимается, как при Космология. Элементы физики Мегамира - student2.ru . Подставив в выражение (1) известные значения Космология. Элементы физики Мегамира - student2.ru (км/с)/106 световых лет и Космология. Элементы физики Мегамира - student2.ru м2/кг×с2, получаем значение критической плотности Космология. Элементы физики Мегамира - student2.ru кг/м3. Самое удивительное, что с учетом плотностей видимой материи 10-34кг/м3, а также плотностей темной материи и темной энергии, мы получаем значение Космология. Элементы физики Мегамира - student2.ru кг/м3, т.е. совпадающее с критической плотностью Космология. Элементы физики Мегамира - student2.ru . Более того, ряд ученых считает, что плотность материи Космология. Элементы физики Мегамира - student2.ru всегда была равна Космология. Элементы физики Мегамира - student2.ru .

В процессе эволюции Вселенной особая роль принадлежит плотности темной энергии, которая играет роль космологической постоянной в гравитационном уравнении Эйнштейна, задавая, как стало ясно, совместно с темной материей определенную стабильность (статичность) галактик, в том числе и нашей галактики – Млечный путь. Так темная материя, благодаря своей гравитации способствует современному положению галактик, а самое главное, и галактических объектов.

Темная энергия усиливает темп расширения Вселенной за счет антигравитации, но одновременно являясь алгебраической суммой энергий всех вакуумных подсистем, очевидно, не изменяет своей плотности, т.е. антигравитация препятствует изменению объема (гравитационному коллапсу) физического вакуума. Методом астрономических наблюдений изучалось влияние темной энергии на движение галактик и их скоплений. Обнаружена удивительная корреляция между плотностью темной энергии (энергией вакуума) и видимой материей в мире. Если бы Вселенная продолжала очень быстро расширяться как в эпоху Большой Космической инфляции, когда, по мнению ряда ученых, произошло отделение антигравитации, т.е. получила простор темная энергия, то галактики, звезды и планеты не успели бы сформироваться. Вещество такой Вселенной находилось бы в состоянии разряженного газа, и человеку места в ней не было бы.

Если бы не произошел наблюдаемый в наше время переход от замедленного расширения к ускоренному, то мы получили бы космос, состоящий не из звезд и планет, а из одних черных дыр. В такой Вселенной человек тоже не мог бы существовать.

На данном этапе расширения Вселенной с ускорением, нашей Галактике – Млечный путь - ничто не угрожает, ее стабильность обеспечивает темная материя. Единственное, что представляется возможным в диапазоне десятков миллиардов лет, это столкновение нашей Галактики и Галактикой Андромеды. Последующие самые экзотические сценарии эволюции нашей Вселенной настолько удалены по времени, что они представляют исключительно научный, но не утилитарно-практический интерес.

Нас же в практическом плане должна интересовать эволюция Солнца (см. схему 51.) и связанная с ней эволюция всей Солнечной системы, которой предстоит еще долгий стабильный период не менее 3-4,5 млрд. лет.

Человек же уже достиг «успехов» в своем антропно-экологическом влиянии на эволюцию Земли, к геологической эволюции которой, в рамках изучения ее структурных уровней мы переходим.

Наши рекомендации