Устройство и классификация центробежных

Насосов

Центробежный насос состоит из следующих основных элементов (рис. 46): спирального корпуса 1, рабочего колеса 2, расположенного внутри корпуса и сидящего на валу 3. Рабочее колесо на вал насаживается с помощью шпонки.

Вал вращается в подшипниках 4, в месте прохода вала через корпус для уплотнения устроены сальники 5. Вода в корпус насоса поступает через всасывающий патрубок 6 и попадает в центральную часть вращающегося рабочего колеса. Под действием лопаток 7 рабочего колеса 2 жидкость начинает вращаться и центробежной силой отбрасывается от центра к периферии колеса в спиральную часть корпуса (в турбинных насосах в направляющий аппарат) и далее через нагнетательный патрубок 8 в напорный трубопровод. В результате действия лопаток рабочего колеса на частицы воды кинетическая энергия двигателя преобразуется в давление и скоростной напор струи.

Напор насоса измеряется в метрах столба перекачиваемой жидкости. Всасывание жидкости происходит вследствие разрежения перед лопатками рабочего колеса.

Для создания большего напора и лучшего отекания жидкости лопатками придают специальную выпуклую форму, причем рабочее колесо должно вращаться выпуклой стороной лопаток в направлении нагнетания.

Центробежный насос должен быть оборудован следующей арматурой и приборами (рис. 47): приемным обратным клапаном с сеткой 1. предназначенным для удержания в корпусе и всасывающем патрубке насоса воды при его заливе перед пуском; сетка служит для задержания крупных взвесей, плавающих в воде; задвижкой 2 на всасывающем патрубке, которая устанавливается около насоса; вакуумметром 3 для измерения разрежения на всасывающей стороне. Вакуумметр устанавливается на трубопроводе между задвижкой и корпусом насоса; краном 4 для выпуска воздуха при заливе (устанавливается в верхней части корпуса); обратным клапаном 5 на напорном трубопроводе, предотвращающем движение воды через насос в обратном направлении при параллельной работе другого насоса; задвижкой 6 на напорном трубопроводе, предназначенной для пуска в работу, остановки и регулирования производительности и напора насоса; манометром 7 на напорном патрубке для измерения напора, развиваемого насосом; предохранительным клапаном (на рисунке не указан) на напорном патрубке за задвижкой для защиты насоса, напорного патрубка и трубопровода от гидравлических ударов; устройством 8 для залива насоса.

В связи с тем, что насосные установки часто включаются в основной комплекс оборудования для регулирования режимов работы различного назначения, они могут быть оборудованы разнообразными приборами автоматики.

Центробежные насосы классифицируют по:

1) числу колес [одноступенчатые (одноколесные), многоступенчатые (многоколесные)]; кроме того, одноколесные насосы выполняют с консольным расположением вала – консольные;

2) напору [низкого напора до 2 кгс/см2 (0,2 МН/м2), среднего напора от 2 до 6 кгс/см2 (от 0,2 до 0,6 МН/м2), высокого напора больше 6 кгс/см2 (0,6 МН/м2)];

3) способу подвода воды к рабочему колесу [с односторонним входом воды на рабочее колесо, с двусторонним входом воды (двойного всасывания)];

4) расположению вала (горизонтальные, вертикальные);

5) способу разъема корпуса (с горизонтальным разъемом корпуса, с вертикальным разъемом корпуса);

6) способу отвода жидкости из рабочего колеса в спиральный канал корпуса (спиральные и турбинные). В спиральных насосах жидкость отводится непосредственно в спиральный канал; в турбинных жидкость, прежде чем попасть в спиральный канал, проходит через специальное устройство – направляющий аппарат (неподвижное колесо с лопатками);

7) степени быстроходности рабочего колеса (тихоходные, нормальные, быстроходные);

8) роду перекачиваемой жидкости (водопроводные, канализационные, кислотные и щелочные, нефтяные, землесосные и др.);

9) способу соединения с двигателем [приводные (с редуктором или со шкивом), непосредственного соединения с электродвигателем с помощью муфт]. Насосы со шкивным приводом встречаются в настоящее время редко.

Теоретическая производительность

Центробежного насоса

Впервые основное уравнение центробежных насосов было выведено членом Петербургской академии наук знаменитым математиком и механиком Л. Эйлером.

В центробежных насосах жидкость подводится к лопаткам рабочего колеса вдоль оси вала (рис. 48). При входе на лопатки происходит отклонение струй от осевого направления к радиальному. Жидкость на лопатки поступает с абсолютной скоростью Устройство и классификация центробежных - student2.ru , ана внешней окружности рабочего колеса скорость ее достигает величины Устройство и классификация центробежных - student2.ru .

Частицы жидкости между лопатками рабочего колеса совершают сложное движение. Во-первых, они участвуют во вращении с окружной переносной скоростью Устройство и классификация центробежных - student2.ru и, во-вторых, перемещаются вдоль лопаток с относительной скоростью Устройство и классификация центробежных - student2.ru .

Для упрощения принимают, что движение жидкости является струйным, и траектории движения каждой частицы повторяют очертания лопаток. Такое движение возможно было бы при бесконечно большом числе лопаток.

Абсолютная скорость движения жидкости равна геометрической сумме переносной (окружной) и относительной скоростей (параллелограмм скоростей на рис. 48)

Устройство и классификация центробежных - student2.ru . (152)

Следует заметить, что окружная скорость Устройство и классификация центробежных - student2.ru направлена по касательной к той окружности, на которой расположена частица, а относительная скорость Устройство и классификация центробежных - student2.ru направлена по касательной к поверхности лопатки в данной точке.

Радиальная составляющая абсолютной скорости на ободе рабочего колеса равна

Устройство и классификация центробежных - student2.ru , (154)

а окружная составляющая

Устройство и классификация центробежных - student2.ru , (155)

где Устройство и классификация центробежных - student2.ru – угол между направлением абсолютной скорости и касательной к окружности; Устройство и классификация центробежных - student2.ru – индекс, обозначающий «радиальная»; Устройство и классификация центробежных - student2.ru – индекс, обозначающий «окружная».

Индексы «1» и «2» приняты для обозначения величин соответственно на входе в рабочее колесо и на выходе из него.

Окружная скорость рабочего колеса на выходе

Устройство и классификация центробежных - student2.ru ,

где Устройство и классификация центробежных - student2.ru –диаметр рабочего колеса, м; Устройство и классификация центробежных - student2.ru –число оборотов в минуту.

Радиальную составляющую абсолютной скорости можно определить исходя из уравнения неразрывности потока

Устройство и классификация центробежных - student2.ru , (156)

где Устройство и классификация центробежных - student2.ru –теоретический расход жидкости, проходящий через колесо, м3/сек; Устройство и классификация центробежных - student2.ru – живое сечение на выходе из колеса, м2; Устройство и классификация центробежных - student2.ru –ширина рабочего колеса на выходе, м; Устройство и классификация центробежных - student2.ru – коэффициент стеснения потока лопатками на выходе; его значение для малых насосов принимают равным 0,9 и для больших – 0,95.

Аналогично можно определить величины абсолютной скорости, окружной скорости, угол между направлением относительной скорости и касательной на входе в рабочее колесо. Абсолютная скорость на входе зависит от конструктивных особенностей рабочего колеса; для большинства насосов угол входа при оптимальном режиме назначается равным 90° с таким расчетом, чтобы избежать гидравлического удара; тогда окружная скорость на входе Устройство и классификация центробежных - student2.ru (радиальный вход).

Коэффициент стеснения струи на входе по лабораторным исследованиям можно принять для малых насосов равным 0,75, для больших – 0,83.

В целях предотвращения гидравлического удара при поступлении жидкости на рабочее колесо необходимо, чтобы скорость ее не изменялась ни по величине, ни по направлению, т. е. направление относительной скорости при входе должно совпадать с направлением изгиба тела лопатки. Практика и опыт показывают, что при небольшом отклонении угла до 7-8° поток от лопаток не отрывается и поэтому гидравлические потери на удар можно принимать равными нулю. А это позволяет лопатки рабочего колеса у входа выполнять несколько круче, чем из условия безударного входа. Кроме того, входную кромку лопаток округляют.

После рассмотрения предварительных данных можно перейти к выводу основного уравнения центробежного насоса.

Выше было принято, что рабочее колесо имеет бесконечно большое число лопаток, и работа происходит без гидравлических потерь; это позволяет считать, что весь поток в колесе состоит из одинаковых элементарных струек, имеющих форму межлопаточного пространства колеса, и что скорости во всех точках цилиндрической поверхности данного радиуса одинаковы.

 
  Устройство и классификация центробежных - student2.ru

Как известно, работа на перемещение жидкости равна

Устройство и классификация центробежных - student2.ru ,

где Устройство и классификация центробежных - student2.ru – объемный вес жидкости; Устройство и классификация центробежных - student2.ru –теоретическая производительность; Устройство и классификация центробежных - student2.ru – теоретический напор.

Используем уравнение моментов количества движения, которое для установившегося потока можно сформулировать так: изменение момента количества движения массы жидкости, протекающей в единицу времени при переходе от одного сечения к другому, равно моменту внешних сил, приложенных к потоку между этими сечениями. Относя положение к центробежному насосу, можно отметить, что внешние силы прикладываются к потоку под действием лопаток рабочего колеса. За 1 сек через каналы рабочего колеса протекает объем жидкости, численно равный перекачиваемому секундному расходу Устройство и классификация центробежных - student2.ru ;его масса равна

Устройство и классификация центробежных - student2.ru .

Момент количества движения потока при радиусе Устройство и классификация центробежных - student2.ru у входа в рабочее колесо (рис. 49) равен

Устройство и классификация центробежных - student2.ru . (157)

Здесь Устройство и классификация центробежных - student2.ru – длина перпендикуляра, опущенного из центра колеса на направление скорости Устройство и классификация центробежных - student2.ru .

Соответственно, момент количества движения потока у выхода из колеса при радиусе Устройство и классификация центробежных - student2.ru

Устройство и классификация центробежных - student2.ru . (158)

Таким образом, изменение момента количества движения жидкости, протекающей через колесо за 1 сек, равно

Устройство и классификация центробежных - student2.ru .

Согласно рис. 49

Устройство и классификация центробежных - student2.ru и Устройство и классификация центробежных - student2.ru .

Подставляя эти значения в предыдущее выражение, имеем

Устройство и классификация центробежных - student2.ru .

Умножая обе части уравнения на угловую скорость Устройство и классификация центробежных - student2.ru , получим

Устройство и классификация центробежных - student2.ru , (а)

где Устройство и классификация центробежных - student2.ru –мощность, затраченная на передачу энергии жидкости.

Поток с расходом Устройство и классификация центробежных - student2.ru переносит в секунду Устройство и классификация центробежных - student2.ru жидкости; если при этом жидкость обладает напором Устройство и классификация центробежных - student2.ru , то поток обладает мощностью

Устройство и классификация центробежных - student2.ru . (б)

Следовательно, можно записать

Устройство и классификация центробежных - student2.ru .

Учитывая, что Устройство и классификация центробежных - student2.ru и Устройство и классификация центробежных - student2.ru из выражений (а) и (б), получим

Устройство и классификация центробежных - student2.ru .

Поделим обе части уравнения на Устройство и классификация центробежных - student2.ru и получим основное уравнение теоретического напора

Устройство и классификация центробежных - student2.ru . (159)

Так как Устройство и классификация центробежных - student2.ru и Устройство и классификация центробежных - student2.ru (проекции скоростей), основное уравнение можно написать в следующем виде:

Устройство и классификация центробежных - student2.ru . (160)

Тангенциальная проекция абсолютной скорости Устройство и классификация центробежных - student2.ru представляет собой скорость закручивания потока до поступления его в рабочее колесо. В современных насосах обеспечивается вход на колесо без предварительного закручивания (радиальный вход). Тогда тангенциальная скорость на входе равна нулю и

Устройство и классификация центробежных - student2.ru . (161)

Уравнение (161) показывает, что напор насоса пропорционален окружной скорости (т. е. числу оборотов и диаметру рабочего колеса) и проекции абсолютной скорости Устройство и классификация центробежных - student2.ru на окружную скорость, т. е. напор тем больше, чем меньше угол Устройство и классификация центробежных - student2.ru и чем больше угол Устройство и классификация центробежных - student2.ru (см. рис. 49). Фактически создаваемый насосом напор меньше теоретического, так как часть энергии расходуется на преодоление гидравлических сопротивлений внутри насоса, а также вследствие того, что не все частицы жидкости совершают движение вдоль лопаток, а это вызывает уменьшение абсолютной скорости.

Чтобы учесть конечное число лопаток рабочего колеса и соответственно величину проекции абсолютной скорости на выходе, вводится поправочный коэффициент К. Исходя из изложенного, уравнение для полного напора при конечном числе лопаток можно написать в виде

Устройство и классификация центробежных - student2.ru , (162)

где К – коэффициент, учитывающий конечное число лопаток; Устройство и классификация центробежных - student2.ru – гидравлический к. п. д., зависящий от конструкции насоса и его размеров и принимающий значения 0,8-0,95.

Практически принимают Устройство и классификация центробежных - student2.ru и Устройство и классификация центробежных - student2.ru . Принять Устройство и классификация центробежных - student2.ru нельзя, так как тогда радиальная скорость на выходе будет равна нулю, и насос не будет подавать жидкость.

Для определения значения К можно привести одну из формул, полученную академиком Г. Ф. Проскура

Устройство и классификация центробежных - student2.ru , (163)

где Устройство и классификация центробежных - student2.ru – число лопаток.

Обычно Устройство и классификация центробежных - student2.ru , тогда К получается равным 0,75-0,9.

При приближенных расчетах для определения напора в метрах водяного столба (м вод. ст.) можно пользоваться следующим уравнением:

Устройство и классификация центробежных - student2.ru , (164)

где Устройство и классификация центробежных - student2.ru –коэффициент напора, принимаемый для насосов турбинного типа, т. е. с направляющим аппаратом, Устройство и классификация центробежных - student2.ru , для спиральных насосов Устройство и классификация центробежных - student2.ru ; Устройство и классификация центробежных - student2.ru –окружная скорость на внешней окружности рабочего колеса, м/сек. Теоретическую производительность рабочего колеса насоса можно вычислить по формуле

Устройство и классификация центробежных - student2.ru , (165)

где Устройство и классификация центробежных - student2.ru – площадь живого сечения потока на выходе из колеса, м2; Устройство и классификация центробежных - student2.ru – средняя радиальная скорость жидкости, м/сек.

Для центробежных насосов площадь живого сечения рабочего колеса (без учета стеснения его лопатками и утечек через неплотности) определяют как боковую поверхность цилиндра с диаметром, равным внешнему диаметру колеса Устройство и классификация центробежных - student2.ru и высотой, равной ширине колеса Устройство и классификация центробежных - student2.ru . Таким образом,

Устройство и классификация центробежных - student2.ru , Устройство и классификация центробежных - student2.ru . (166)

При бесконечно большом числе лопаток радиальная скорость может быть принята одинаковой во всех точках цилиндрической поверхности данного радиуса, а отсюда средняя скорость в уравнении расхода равна радиальной скорости на выходе, т. е. Устройство и классификация центробежных - student2.ru .

Итак, теоретическая производительность равна:

для выходного сечения

Устройство и классификация центробежных - student2.ru , (167)

(без учета стеснения и утечек через неплотности);
для входного сечения

Устройство и классификация центробежных - student2.ru ; (168)

полезная производительность

Устройство и классификация центробежных - student2.ru , (169)

где Устройство и классификация центробежных - student2.ru – объемный к. п. д. насоса.

Наши рекомендации