Устройство и принцип действия машины постоянного тока.

Работа машины постоянного тока в четырёх квадрантах плоскости механических характеристик: двигательный режим, реверсивный режим, генераторный режим, режим торможения противовключением, режим рекуперативного торможения и режим динамического торможения.

Если в уравнении механической характеристики ω=U/(KΦ)−Rя·M/(KΦ)2 изменять напряжение в интервале (+Uн,−Uн), то при различных значениях скорости и момента мы получим семейство механических характеристик, расположенных во всех четырех квадрантах плоскости параметров ω,M.

Устройство и принцип действия машины постоянного тока. - student2.ru

В квадрантах 1 и 3 имеем двигательный режим, так как здесь электромагнитная мощность двигателя положительна – P=Mω>0, а в квадрантах 2 и 4 реализуются тормозные (генераторные) режимы, так как здесь P<0. Причем, если двигательный режим один (область его существования отмечена горизонтальной штриховкой), то тормозных режимов несколько. Рассмотрим их.

Из теории электрических машин известно, что генераторный режим имеет место в том случае, если э.д.с. и ток двигателя одного знака. Согласно формуле U=RяIя+E имеем:

Iя=(U−E)/Rя.

Отсюда можно заключить, что ток и э.д.с. будут одного знака в трех случаях:

1. Если при одинаковых знаках, модуль э.д.с. больше модуля напряжения на якорной обмотке: |E|>|U|;

2. Если напряжение якорной обмотки равно нулю: U=0 (при ω≠0);

3. Если напряжение и э.д.с. имеют разные знаки: signU=−signE.

Режим, соответствующий первому условию, называют рекуперативным торможением. Он возникает в том случае, если скорость двигателя под действием внешнего момента, возникающего при торможении рабочего органа, превысит скорость холостого хода, т.е. рабочая точка привода по механической характеристике перейдет из квадранта 1 в квадрант 2, либо из квадранта 3 в квадрант 4. Область существования режима рекуперативного торможения отмечена вертикальной штриховкой. При этом двигатель работает как обычный генератор постоянного тока, его механическая и электромеханическая характеристики описываются теми же уравнениями ω=U/(KΦ)−RяIя/(KΦ) и ω=U/(KΦ)−Rя·M/(KΦ)2. Уравнение баланса мощностей имеет вид

Pэ=Pм−ΔP

где: Pм – механическая мощность, поступающая от рабочего органа,

Pэ – мощность, генерируемая двигателем,

ΔP – потери мощности в обмотке якоря.

В соответствии с этим механическая энергия торможения рабочего органа частично возвращается в сеть, а частично рассеивается в виде потерь в двигателе.

Режим, соответствующий второму условию называют динамическим торможением. Физически он реализуется путем отключения двигателя от сети и закорачивания обмотки якоря, либо включения ее на добавочное активное сопротивление. В первом случае рабочая точка привода оказывается на линии механической характеристики при U=0, которая является механической характеристикой режима динамического торможения при Rд=0. Во втором случае уравнение механической характеристики двигателя при динамическом торможении имеет вид

ω=−(Rя+Rд)·M/(KΦ)2

Следовательно, в обоих случаях механические характеристики проходят через начало координат и отличаются только жесткостью.

Уравнение баланса мощностей для динамического торможения имеет вид Pм=ΔP.

Согласно этому уравнению механическая энергия торможения рассеивается в виде электрических потерь на добавочном сопротивлении и в обмотке якоря.

Режим, соответствующий третьему условию, называют противовключением. Физически он реализуется, если под действием момента со стороны рабочего органа двигатель начнет вращаться в обратную сторону, т.е. рабочая точка перейдет по механической характеристике из квадранта 1 в квадрант 4 или из квадранта 3 в квадрант 2. Режим противовключения возникает также, если в работающем двигателе изменить полярность напряжения на якорной обмотке. Тогда за счет инерции вращающихся частей какое-то время якорь будет вращаться в сторону, противоположную направлению момента. Отсюда и название режима. Область существования режима противовключения отмечена наклонной штриховкой.

Уравнение механической характеристики имеет вид: ω=−(U/(KΦ)+Rя·M/(KΦ)2).

При переключении полярности напряжения в обмотке якоря может возникнуть большой ток, определяемый выражением Iя=−(U+E)/Rя, поэтому необходимо предусматривать меры по его ограничению, например, путем введения добавочного сопротивления в цепь якоря или используя устройства ограничения тока в преобразователях напряжения, от которых питается двигатель.

Уравнение баланса мощностей имеет вид: Pм+Pэ=ΔP.

В соответствии с этим уравнением при торможении противовключением механическая энергия торможения и электрическая энергия, потребляемая двигателем, преобразуются в электрические потери.

Реверсирование – это изменение направление вращения двигателя. Обычно оно выполняется в две стадии. Сначала двигатель останавливается торможением, а затем изменяется направление тока якоря или обмотки возбуждения и производится пуск. В микромощных (до 500 Вт) двигателях, если нагрузка допускает ударные моменты и требуется изменение направления вращения за минимальный отрезок времени, реверсирование вращающегося двигателя осуществляют переключением обмотки якоря.

Двигательный и генераторный режимы подробно рассмотрены в 9.1.

Устройство и принцип действия машины постоянного тока.

Электрическая машина - устройство, предназначенное для преобразования механической энергии вращения в электрическую (генератор) и наоборот, электрическую энергию в механическую (двигатель). Работа электрической машины основана на единстве закона электромагнитной индукции и закона электромагнитных сил.

Машина постоянного тока состоит из 2–х основных частей: неподвижной – статора и вращающейся – якоря (ротора). Между ними всегда имеется воздушный зазор.

Статор, являющийся индуктором, т.е. такой частью машины, в котором наводится магнитное поле, состоит из станины, главных и добавочных полюсов. К статору относятся также подшипниковые щиты с подшипниками. На статоре крепятся щеточный аппарат и коробка выводов.

Якорь состоит из сердечника якоря и коллектора, насаженных на вал. В машинах с самовентиляцией на валу крепится вентилятор.

Возьмем устройство, состоящее из двух магнитных полюсов создающих постоянное магнитное поле, и якоря– стального цилиндра с уложенным на нем витком из электропроводного материала. Концы витка присоединены к двум металлическим полукольцам, изолированным друг от друга и от вала. Полукольца соприкасаются с неподвижными щетками, соединенными с внешней цепью. Устройство и принцип действия машины постоянного тока. - student2.ru

При вращении якоря в соответствии с законом электромагнитной индукции в проводниках витка ab и cd при пересечении ими магнитного поля будет индуктироваться ЭДС, которая при наличии стального цилиндра равна

e = BLV, где

V – линейная скорость движения проводника относительно магнитного поля;

B – индукция магнитного поля;

L – длина активной части витка.

Направления ЭДС в проводниках ab и cd определяется по правилу правой руки. По контуру abcd эти ЭДС складываются и, так как верхний и нижний проводники находятся в одинаковых магнитных условиях, то ЭДС витка будет

Устройство и принцип действия машины постоянного тока. - student2.ru

Устройство и принцип действия машины постоянного тока. - student2.ru

Таким образом, в данных условиях характер изменения во времени ЭДС в проводнике при вращении определяется характером распределения индукции в зазоре. Распределение ее по окружности якоря неравномерное, так как магнитное сопротивление Rμ потоку различное. Под полюсами индукция В имеет максимальное значение, в промежутке между полюсами индукция уменьшается, достигая на линии qq нулевого значения

Линия dd, проходящая через центр якоря вдоль полюсов, называется продольной осью машины, а линия qq, проходящая через центр якоря посредине между полюсами, называется поперечной осью. Поперечную ось также называют геометрической нейтралью. Часть окружности якоря, приходящуюся на один полюс, называет полюсным делением и обозначают τ.

При вращении якоря через каждые полоборота проводники ab и cd оказываются в поле противоположных полюсов. Поэтому направление ЭДС в них меняется на противоположное. Таким образом, при вращении якоря в витке индуктируется переменная ЭДС (рисунок 1.2,б). Для получения во внешней цепи постоянного тока устанавливают специальный переключатель, называемый коллектором. Проводники ab и cd присоединяются к полукольцам, изолированным друг от друга и от вала. Полукольца (пластины коллектора) соприкасаются с неподвижными щетками, соединенными с внешней цепью. При вращении якоря каждая из щеток будет соприкасаться только с той коллекторной пластиной и соответственно только с тем из проводников, который находится под полюсом данной полярности. Направление ЭДС в витке изменяется на линии геометрической нейтрали и в это же момент происходит переключение полуколец к щеткам А и В. В результате полярность щеток в процессе работы машины остается неизменной, а ЭДС и ток во внешней цепи становятся постоянными по направлению и переменным» по величине. Таким образом, коллектор играет роль механического переключателя сторон витка к щеткам, т.е. является выпрямителем. Чтобы сгладить пульсацию ЭДС и тока во внешней цепи, на якоре располагают несколько витков, присоединенных к соответствующим парам коллекторных пластин и сдвинутых относительно друг друга на некоторый угол. Практически уже при 16 витках на якоре пульсации тока становятся незаметными и ток во внешней цепи можно считать постоянными не только по направлению, но и по величине. Таким образом, мы получили генератор постоянного тока.

Рассмотрим работу данной системы в режиме двигателя. Если к щеткам приложить напряжение внешнего источника электроэнергии, то в витке потечёт ток. Согласно закону электромагнитных сил на каждую сторону витка будет действовать сила

Устройство и принцип действия машины постоянного тока. - student2.ru

Эти силы создадут вращающий момент

Устройство и принцип действия машины постоянного тока. - student2.ru

Под действием этого момента якорь начнет вращаться, преодолевая момент сопротивления на валу. После прохождения сторонами витка линии геометрической нейтрали они попадают в зону полюса противоположной полярности. Но в это же время в них изменяется и направление тока, что осуществляется с помощью коллектора. В результате направление момента остается прежним, и якорь будет вращаться в том же направлении. В этом случае коллектор выполняет роль инвертора – преобразователя постоянного тока в переменный.

Наши рекомендации