Ен.01 элементы высшей математики.

ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ.

1.

Понятие предела функции в точке. Теоремы о пределах. Виды пределов

Ответ:

Предел функции в заданной точке — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

теоремы:

Если значения функций в окрестности некоторой точки равны, то и их пределы в этой точке совпадают

Если функция имеет предел, то он единственный.

Предел константы равен этой константе

Непрерывность функции в точке и на промежутке. Точки разрыва функции

Ответ:

Функция называется непрерывной в точке, если она определена в этой точке и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Функция называется непрерывной на интервале, если она непрерывна в каждой точке этого интервала.

Все точки разрыва функции разделяются на точки разрыва первого и второго рода.
функция имеет точку разрыва первого рода при, если в это точке существуют левосторонний предел и правосторонний предел, эти односторонние пределы конечны.
Функция имеет точку разрыва второго рода при, если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Раскрытие неопределенностей

Ответ:

Неопределенность типа 𝟎𝟎

Пусть заданы две функции f(x) и g(x) , такие, что

𝐥𝐢𝐦𝒙→𝒂𝐟(𝐱)=𝟎 и 𝐥𝐢𝐦𝒙→𝒂𝐠(𝐱)=𝟎

В этом случае говорят, что функция 𝒇(𝒙)𝒈(𝒙) имеет неопределённость 𝟎𝟎 в точке x=a. Чтобы найти предел при х=а, когда функция 𝒇(𝒙)𝒈(𝒙) содержит неопределённость 𝟎𝟎, нужно разложить на множители численность и/или знаменатель и затем сократить члены, стремящиеся к нулю. Примечание: В данном разделе при вычислении пределов не используется правило Лопиталя.

Неопределенность типа ∞∞

Пусть две функции f(x) и g(x) обладают свойством

𝐥𝐢𝐦𝒙→𝒂𝐟(𝐱)=±∞ и 𝐥𝐢𝐦𝒙→𝒂𝐠(𝐱)=±∞

Где a является действительным числом, либо стремится к + или -∞. В Этом случае функция имеет в точке а неопределённость типа ∞∞. Для вычисления предела в этой точке необходимо разделить числитель и знаменатель на x в наивысшей степени.

Неопределенности типа ∞−∞, 0*∞, ∞^0, 1^∞

Неопределённости этих типов сводятся к рассмотренным выше неопределённостям типа 𝟎𝟎 и ∞∞.

5.

6.Асимптоты графика функции

Ответ:

Асимптота – это прямая, к которой неограниченно близко приближается график функции при удалении его переменной точки в бесконечность.

1) Вертикальные асимптоты, которые задаются уравнением вида ен.01 элементы высшей математики. - student2.ru , где «альфа» – действительное число. Популярная представительница ен.01 элементы высшей математики. - student2.ru определяет саму ось ординат, вспоминаем гиперболу ен.01 элементы высшей математики. - student2.ru .

Таким образом, чтобы установить наличие вертикальной асимптоты ен.01 элементы высшей математики. - student2.ru в точке x=0 достаточно показать, что хотя бы один из односторонних пределов ен.01 элементы высшей математики. - student2.ru бесконечен. Чаще всего это точка, где знаменатель функции равен нулю.

2)Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом ен.01 элементы высшей математики. - student2.ru . Иногда отдельной группой выделяют частный случай – горизонтальные асимптоты ен.01 элементы высшей математики. - student2.ru . Например, та же гипербола с асимптотой ен.01 элементы высшей математики. - student2.ru .Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к «плюс бесконечности» или к «минус бесконечности». Поэтому график функции не может иметь больше двух наклонных асимптот. Например, график экспоненциальной функции ен.01 элементы высшей математики. - student2.ru обладает единственной горизонтальной асимптотой при ен.01 элементы высшей математики. - student2.ru , а график арктангенса ен.01 элементы высшей математики. - student2.ru при ен.01 элементы высшей математики. - student2.ru – двумя такими асимптотами, причём различными. Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью ен.01 элементы высшей математики. - student2.ru . Например,: ен.01 элементы высшей математики. - student2.ru .

Общее практическое правило:Если существуют два конечных предела ен.01 элементы высшей математики. - student2.ru , то прямая ен.01 элементы высшей математики. - student2.ru является наклонной асимптотой графика функции ен.01 элементы высшей математики. - student2.ru при ен.01 элементы высшей математики. - student2.ru . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.

3) Горизонтальные асимптоты

Если существует конечный предел ен.01 элементы высшей математики. - student2.ru , то прямая ен.01 элементы высшей математики. - student2.ru является горизонтальной асимптотой графика функции ен.01 элементы высшей математики. - student2.ru при ен.01 элементы высшей математики. - student2.ru .

Нетрудно заметить, что числитель и знаменатель функции ен.01 элементы высшей математики. - student2.ru одного порядка роста, а значит, искомый предел будет конечным:
ен.01 элементы высшей математики. - student2.ru

Поведение на бесконечности

Исследуем поведение функции на бесконечности, то есть при ен.01 элементы высшей математики. - student2.ru .

ен.01 элементы высшей математики. - student2.ru

7.

8.

9.

10.

11.

12.

13.

14.Возрастание и убывание функций.

Ответ:

Определение возрастающей функции: Функция 𝑓(𝑥) называется возрастающей на некотором интервале, если для любых двух точек 𝑥1 и 𝑥2 этого интервала, таких что 𝑥1<𝑥2, справедливо 𝑓(𝑥1)<𝑓(𝑥2). Другими словами, большему значению аргумента соответствует большее значение функции.

Определение убывающей функции: Функция 𝑓(𝑥) называется убывающей на некотором интервале, если для любых двух точек 𝑥1 и 𝑥2 этого интервала, таких что 𝑥1<𝑥2, справедливо 𝑓(𝑥1)>𝑓(𝑥2). Другими словами, большему значению аргумента соответствует меньшее значение функции.

Исследование функции

Ответ:

Чтобы исследовать функцию y = f(x) и построить ее график необходимо:

1) найти область определения функции, то есть множество всех точек для которых существует значение функции;

2) найти (если они существуют) точки пересечения графика с координатными осями. Для этого нужно в уравнение ен.01 элементы высшей математики. - student2.ru подставить аргумент ен.01 элементы высшей математики. - student2.ru а также решить уравнение ен.01 элементы высшей математики. - student2.ru для отыскания точек пересечения с осью ен.01 элементы высшей математики. - student2.ru ;

3) исследовать функцию на периодичность, четность и нечетность. В некоторых случаях это можно сделать визуально по самому виду функции, если нет, то провести проверку:

1. ен.01 элементы высшей математики. - student2.ru – функция четная;

2. ен.01 элементы высшей математики. - student2.ru – функция нечетная;

3. ен.01 элементы высшей математики. - student2.ru – функция периодическая, ен.01 элементы высшей математики. - student2.ru – период функции.

Таким образом, если имеем парную функцию ен.01 элементы высшей математики. - student2.ru то достаточно построить ее для положительных значений ен.01 элементы высшей математики. - student2.ru , после чего отразить ее симметрично относительно оси абсцисс на другую часть. В случае нечетной функции график будет симметричен относительно начала координат. Например, если имеет нечетную функцию график которой принадлежит первой четверти вторую половину получим поворотом первой четверти на 180 градусов (третья четверть).

Периодическими являются преимущественно функции, составленные из простых тригонометрических и некоторые параметрически заданные функции.

4) найти точки разрыва и исследовать их (такими точками являются края интервалов определения функции);

5) найти интервалы монотонности, точки экстремумов и значения функции в этих точках;

6) найти интервалы выпуклости, вмятины и точки перегиба;

7) найти асимптоты кривой;

8) построить график функции.

ен.01 элементы высшей математики. - student2.ru

1) Функция определена по всюду кроме точки, в которой знаменатель превращается в ноль ( ен.01 элементы высшей математики. - student2.ru ). Область определения состоит из двух интервалов

ен.01 элементы высшей математики. - student2.ru

2) При подстановке значения ен.01 элементы высшей математики. - student2.ru получим

ен.01 элементы высшей математики. - student2.ru

Такую же точку получим если приравняем функцию к нулю. Точка ен.01 элементы высшей математики. - student2.ru - единственная точка пересечения с осями координат.

3) Проверяем функцию на четность

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

Итак функция ни четная, ни нечетная, непериодическая.

4) В данном случае имеем одну точку разрыва ен.01 элементы высшей математики. - student2.ru . Вычислим границы слева и справа от этой точки

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

Итак ен.01 элементы высшей математики. - student2.ru – точка разрыва второго рода.

5) Для отыскания интервалов монотонности вычисляем первую производную функции

ен.01 элементы высшей математики. - student2.ru

Приравнивая ее к нулю получим точки подозрительные на экстремум ен.01 элементы высшей математики. - student2.ru . Они разбивают область определения на следующие интервалы монотонности

ен.01 элементы высшей математики. - student2.ru

Исследуем поведение производной слева и справа от найденных точек разбиения

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

Графически интервалы монотонности будут иметь вид

ен.01 элементы высшей математики. - student2.ru

Исследуемая функция возрастает на интервалах ен.01 элементы высшей математики. - student2.ru и убывает ен.01 элементы высшей математики. - student2.ru .

Точка ен.01 элементы высшей математики. - student2.ru – точка локального максимума, ен.01 элементы высшей математики. - student2.ru – локального минимума. Найдем значение функции

ен.01 элементы высшей математики. - student2.ru

6) Для отыскания интервалов выпуклости найдем вторую производную

ен.01 элементы высшей математики. - student2.ru

Таких интервалов нет, поскольку вторая производная не принимает нулевых значений в области определения.

7) Точка ен.01 элементы высшей математики. - student2.ru – вертикальная асимптота функции. Уравнение наклонной асимптоты имеет вид

ен.01 элементы высшей математики. - student2.ru

где ен.01 элементы высшей математики. - student2.ru - границы которые вычисляются по правилу

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

Находим нужные границы

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

ен.01 элементы высшей математики. - student2.ru

Конечный вид прямой следующий

ен.01 элементы высшей математики. - student2.ru

8) На основе проведенного анализа выполняем построение графика функции. Для этого сначала строим вертикальные и наклонные асимптоты, затем находим значение функции в нескольких точках и по них проводим построение.

ен.01 элементы высшей математики. - student2.ru

18.

Метод подстановки

Ответ:

Сущность этого метода заключается в том, что путём введения новой переменной интегрирования удаётся свести заданный интеграл к новому интегралу, который сравнительно лёгко берётся непосредственно.

Пусть дан интеграл ∫f(x)dx, который не является табличным.

Записываем уравнение замены

y=y(x)

Находим дифференциал этой функции

.dy=y’(x)dx

Выражаем

dx=(dy)/(y’(x)).

Подставим в данный интеграл:

∫f(x)dx= ∫g(y)dy

Находим

. ∫g(y)dy=F(y)+C

Чтобы получить окончательный ответ, вместо переменной y подставляем y(x) выражение :

∫f(x)dx+F(y(x))+C

27.

28.

29.

32.

33.

34.

ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ.

1.

Наши рекомендации