Часть 2. Сильное взаимодействие более конкретно
Открывая атомные ядра
Основное открытие, которое привело к современным успешным атомным моделям, было сделано Гансом Гейгером и Эрнестом Марсденом в 1911 г. Работая в лаборатории Резерфорда и реализуя его идею, Гейгер и Марсден изучали отклонение тонким слоем золотой фольги альфа-частиц, испускаемых при радиоактивном распаде радия. Они наблюдали случаи сильного отклонения. Резерфорд рассказывал об этом эпизоде так:
Это было самым потрясающим событием из всех, что случались со мной в жизни. Это было почти так же невероятно, как если бы вы выстрелили 15-дюймовым [артиллерийским] снарядом в кусочек папиросной бумаги, а он бы отлетел назад и попал в вас. Подумав, я понял, что такое обратное рассеяние должно быть результатом единственного столкновения, и когда я произвел расчеты, я увидел, что можно было получить что-либо близкое к такому порядку величины, если только взять систему, в которой большая часть массы атома сосредоточена в мельчайшем ядре. И именно тогда у меня появилась идея атома с очень маленьким массивным центром, несущим заряд…
Резерфорд предложил определенную, удивительно простую модель, объяснявшую наблюдения. Он предположил, что в каждом атоме есть крошечное ядро, содержащее весь его положительный заряд и практически всю его массу. Это могло объяснить редкое, но мощное обратное рассеяние – ядро не хочет двигаться (потому что оно тяжелое) и оно способно оттолкнуть альфа-частицу (так как в нем сконцентрирован заряд). Резерфорд сделал это рабочей моделью и подтвердил ее, количественно объяснив рассеяния на большие углы. Остальная часть атома, согласно Резерфорду, состояла из гораздо более легких отрицательно заряженных электронов, каким-то образом распределенных по гораздо большему объему.
Это был эпохальный результат. Он показал, что понимание структуры атома можно удобно разделить на две задачи. Первая задача – то, что мы сейчас называем атомной физикой, – это рассматривать тяжелое, положительно заряженное ядро как данность и после этого определять, как с ним связываются электроны. Мы обсудили эту область квантовой красоты до этого.
Вторая задача – то, что мы сейчас называем ядерной физикой, – это понять, из чего сделаны эти центры атомов и каким законам они подчиняются.
Быстро стало ясно, что одни лишь электрические силы не могут объяснить физику ядер. Действительно, чисто электрическая модель не могла решить проблему с концентрацией положительного заряда в ядре атома. Не будучи уравновешена другой, более мощной силой, сила электрического отталкивания должна была разорвать ядро на части. Гравитация? При таких крошечных массах ей можно полностью пренебречь. За это должны были отвечать новые силы, неизвестные классической физике.
Ядерная физика поставила две задачи: экзистенциальную и динамическую. Экзистенциальная заключается в том, чтобы определить ингредиенты ядер, а динамическая – в том, чтобы понять силы, с которыми эти составляющие действуют друг на друга. С переписью ингредиентов расправились через несколько лет, и это было довольно просто. Один компонент был более или менее очевиден. Ядро водорода стабильно, (по всей видимости) неделимо и имеет единичный (положительный) электрический заряд. Оно самое легкое из всех ядер, и другие легкие ядра имеют массы, близкие к целому числу его масс. Следовательно, этот протон – названный так Резерфордом – один из ингредиентов.
Второй компонент был открыт Джеймсом Чедвиком в 1932 г. Нейтрон – это электрически нейтральная частица лишь чуть-чуть тяжелее протона. Его открытие дало нам простое, но полезное представление о том, что такое атомные ядра: они являются совокупностью протонов и нейтронов, связанных друг с другом. С таким представлением многие наблюдаемые факты встали на свои места. Например, ядра разных химических элементов различаются только числом протонов, которые они содержат, поскольку это число определяет электрический заряд ядра, от которого зависит его взаимодействие с окружающими атом электронами, последние же в свою очередь обуславливают его химию. Разное количество протонов в ядре дает атомы различных химических элементов. С нейтронами в качестве второго игрока мы решаем загадку изотопов. Атомы, содержащие изотопические ядра, имеют одинаковые химические свойства, но различаются по массе. Их ядра содержат одинаковое число протонов, но разное число нейтронов. Таким образом, простая модель атомного ядра, состоящего из протонов и нейтронов, объясняла одновременно разнообразие химических элементов и существование изотопов.
Считалось, что следующим шагом будет выяснить, какие силы действуют между протонами и нейтронами и удерживают их вместе. Как мы уже говорили, нужны были новые силы, поскольку электромагнитное взаимодействие стремится разорвать ядра на части, а гравитационное столь слабо, что им можно пренебречь.
Однако эксперименты по исследованию ядерных сил вскоре пошли неожиданными путями. Практически все они следовали стратегии первоначального эксперимента Гейгера – Марсдена. Чтобы исследовать, скажем, взаимодействие между протонами, пучком протонов стреляли по другим протонам (по водородной мишени) и следили за тем, что из этого получается. Наблюдая отклонения на разные углы, можно попытаться сделать выводы об ответственной за это силе. Использование пучков с протонами различных энергий и с протонами, вращающимися в разных направлениях, улучшает анализ. Эксперименты такого типа вскоре показали, что силы, действующие между протонами и нейтронами, не подчиняются простому уравнению. Они зависят не только от расстояния, но и от скорости и спина, причем сложным образом.
Если смотреть глубже, эксперименты вскоре похоронили надежду – надежду нашего Вопроса – на то, что протоны и нейтроны являются простыми частицами и что какая-нибудь красивая «сила», в традиционном понимании этого слова, могла бы объяснить то, что на самом деле происходит при их взаимодействии. Потому что, когда протоны сталкивались с другими протонами, результатом обычно являлось не просто отклонение двух сталкивающихся частиц. Вместо этого появлялся целый поток частиц!
В сущности, эксперименты, направленные на открытие простой силы, вместо этого обнаружили новый и неожиданный мир частиц. Мезоны p, ρ, K , η, ρ, ω, K *, ϕ и барионы Λ, ∑, Ξ, ∆, Ω, ∑*, Ξ*, Ω являются самыми легкими и самыми доступными из них. (Существуют десятки других.) Эти частицы, все без исключения, очень нестабильны и живут не больше микросекунды (а в большинстве случаев гораздо меньше). Выводы об их существовании и свойствах должны быть сделаны на основе изучения продуктов их распада в детекторах на ускорителях высоких энергий, таких как ускорители в Брукхейвенской национальной лаборатории, в Фермилабе и в CERN. Эти новые частицы все вместе называются адронами .
Так же как классификация бабочек или палеонтологическая история лошадей, состав адронного «зверинца» и характеристики его обитателей – массы, спины, времена жизни, варианты распадов – завораживают истинных ценителей. Однако, чтобы продвинуться в нашем поиске красоты к основам, мы должны перейти к более общим вопросам. Для дальнейшего использования позвольте мне кратко резюмировать два наиболее важных урока, которые можно извлечь из этого «зверинца».
Адроны состоят из двух царств – барионов и мезонов [71]. Протоны и нейтроны являются прототипом барионов. Все барионы обладают несколькими общими свойствами. Все они испытывают на малых дистанциях сильное взаимодействие в присутствии друг друга либо в присутствии мезонов, и (для экспертов) все они являются фермионами. Мезоны также обладают общими свойствами. Все они испытывают на малых дистанциях сильное взаимодействие в присутствии друг друга либо в присутствии барионов, и (для экспертов) все они являются бозонами.
Протоны и нейтроны не являются ни простыми, ни фундаментальными. Представить себе атомное ядро состоящим из протонов и нейтронов было полезным шагом, но эти частицы не являются простыми или фундаментальными – их взаимодействия сложны, и они являются лишь двумя членами гораздо более широкого семейства похожих частиц. Чтобы посмотреть на них с правильной перспективы и завершить анализ материи, нужен новый и более широкий взгляд.
Кварковая модель
Кварковая модель была придумана Мюрреем Гелл-Манном и Джорджем Цвейгом и стала блестящей демонстрацией силы воображения и распознавания образов.
Согласно кварковой модели, барионы – это связанные состояния трех более фундаментальных сущностей – трех видов, или «ароматов», кварков: верхнего u , нижнего d и странного s . (Пока этого достаточно, и я отложу рассмотрение гораздо более тяжелых, крайне нестабильных кварков c, b, t на потом.)
Но как всего три аромата кварков – u, d, s – порождают сотни различных барионов? Дело в том, что некая заданная тройка кварков, скажем, u, u, d , может существовать во многих различных состояниях движения, аналогичных дискретным боровским орбитам электронов в атомах или стационарным состояниям на илл. 26 в главе «Квантовая красота I». Эти дискретно различные состояния имеют различные энергии и, следовательно, – если применить формулу m = E/c ² – разные массы. Поэтому, с точки зрения экспериментатора, они кажутся разными частицами! Таким образом, мы обнаруживаем, что множество разных частиц отражает одну и ту же материальную структуру, лежащую в их основе и зафиксированную в различных состояниях внутреннего движения.
Сходным образом кварковая модель постулирует, что мезоны – это связанные состояния одного кварка и одного антикварка. Каждая пара кварк-антикварк, скажем, в различных состояниях движения образует множество различных мезонов.
Кварковая модель также дает правдоподобное объяснение сложности адронных сил. Даже если отдельные кварки взаимодействуют просто, но, когда связанные состояния из трех кварков или из кварка и антикварка встречаются друг с другом, существует большой простор для наводок и взаимоподавления. Примерно по тем же причинам обычная химия, основанная на взаимодействиях атомов, оказывается сложной и разнообразной, хотя силы между отдельными электронами, на которых она основана, чрезвычайно просты.
Кварковая модель была главным шагом в упорядочении адронного «зоопарка». Она предоставляет описание адронов, подобное по его объяснительной силе боровской модели атома. Но кварковая модель, как и модель Бора, имеет ограничения. Хотя она правильна по своему духу и исторически важна, кварковая модель является логически неполной и только полуматематической. Кроме того, она столкнулась с большой проблемой, что мы сейчас и обсудим.
Кварковая модель дала успешное описательное объяснение многих свойств протонов, нейтронов и родственных им адронов. Но она постулировала некоторые очень странные свойства для кварков. Возможно, самым странным из таких свойств является конфайнмент, шутливо изображенный на карикатуре на вклейке MM – она взята из плаката, который ознаменовал мою Нобелевскую премию. Предполагается, что кварки являются строительными блоками протонов, но, несмотря на очень большие усилия, свободные частицы со свойствами кварка (такими как дробный заряд, равный 2⁄3 или −1⁄3 электрического заряда протона) никогда не наблюдались. Таким образом, кварки в группах по три штуки могут образовывать протоны, в которых силы между ними оказываются умеренными. Но по каким-то причинам они не могут высвободиться – кварки удерживаются вместе, находясь в состоянии конфайнмента.
Чтобы учесть это поведение, нам, похоже, нужны связи между кварками, похожие на пружину или резинку, которые тянут кварк тем сильнее, чем больше растягивается связывающая пружина или резинка при увеличении расстояния. Пружины и резинки, конечно, сами по себе являются сложными физическими объектами, поэтому недопустимо предполагать их наличие в фундаментальной теории. И если мы все же так делаем, возникает вопрос: из чего сделана эта пружина?
Физики привыкли, что фундаментальные силы становятся слабее с расстоянием, как это происходит с гравитационными и электромагнитными силами, и поэтому конфайнмент оказался большой проблемой. Многие физики так не смогли заставить себя отнестись к кваркам серьезно именно из-за этого.