Тепловой баланс котельного агрегата.

Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса определяют расход топлива и вычисляют коэффициент полезного действия, эффективность работы котельного агрегата.

В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на выработку и перегрев пара или нагревания воды. Вследствие неизбежных потерь при передаче теплоты и преобразования энергии вырабатываемый продукт (пар, вода и т.д.) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания потлива) и передачи теплоты вырабатываемому продукту.

Уравнение теплового баланса для установившегося теплового состояния агрегата записывают в следующем виде:

Qpp=Q1+ Qп

или

Qрр=Q1+Q2+Q3+Q4+Q5+Q6 (14.1)

где Qpp – теплота, которой располагают; Q1 – использованная теплота; Qп - общие потери; Q2 – потери теплоты с уходящими газами; Q3 – потери теплоты от химического недожога; Q4 – потери теплоты от механической неполноты сгорания; Q5 – потери теплоты в окружающую среду; Q6 – потери теплоты с физической теплотой шлаков.

Левая приходная часть уравнения теплового баланса (14.1) является суммой следующих величин:

Qрр=Qрн+Qв.вн+Qпар+Qфиз.т. (14.2)

где Qв.вн – теплота, вносимая в котлоагрегат с воздухом на 1 кг топлива; эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухонагревателе, то, теплота не учитывается, так как она возвращается в топку агрегата; Qпар - теплота, вносимая в топку с дутьевым (форсуночным) паром на 1 кг потлива; Qфиз.т. - физическая теплота 1 кг или 1 м3 топлива.

Теплоту, вносимую с воздухом, рассчитывают по равенству:

Qв.вн = b/V0ср/(Tг.вз – Тх.вз), . (14.3)

где b/ - отношение количества воздуха на входе в воздухоподогреватель к теоретически необходимому; ср/= 1,33 кДж/(м3·К), при температуре воздуха до 600К; Тг.вз , Тх.вз – температуры горячего о холодного воздуха, обычно Тх.вз = 300К.

Теплоту, вносимую с паром для распыления мазута (форсуночный пар), находят по формуле:

Qпар = Wф (iф – r) , . (14.4)

где Wф – расход форсуночного пара, равный 0,3-0,4 кг/кг; iф – энтальпия форсуночного пара, кДж/кг; r – теплота парообразования, кДж/кг.

Физическая теплота 1 кг топлива:

Qфиз.т. = стт – 273) , . (14.5)

где ст – теплоемкость топлива, кДж/(кг· К); Тт – температура топлива.

Если предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то Qрр=Qрн.

Тема 15. Топочные устройства.

15.1. Топочные устройства.

15.2. Сжигание топлива.

15.3. Теплотехнические показатели работы топок.

Топочные устройства.

Топка – один из основных элементов котельного агрегата. В ней происходит процесс горения, при котором химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, передаваемую далее жидкости и пару, находящимся в котле.

Существующие топочные устройства можно разделить на слоевыеи камерные.

Слоевые топкипредназначены для сжигания твердого топлива в слое на колосниковой решетке. В камерных топкахсжигается твердое топливо во взвешенном состоянии в виде пыли и дробленых частиц, а также жидкое, распыляемое с помощью форсунок, и газообразное. Камерные топки подразделяются на факельные и вихревые.

На рис.15.1 показаны схемы слоевого, факельного и вихревого способов сжигания топлива. При слоевом способе сжигания необходимый для горения воздух попадается к слою топлива через колосниковую решетку.

При факельном способе сжигания твердое топливо предварительно размалывается в мельницах и пыль вместе с воздухом (аэросмесь) попадает в топку. Время пребывания газа и пыли в объеме топки незначительно (1,5-2 с).

Циклонный способ сжигания основан на использовании закрученных топливовоздушных потоков. Транспорт топлива осуществляется воздухом. Топливные частицы циркулируют по определенным траекториям в течение времени, необходимого для завершения их сгорания. Под действием центробежных сил частицы движутся в виде уплотненного пристенного слоя, интенсивно перемешиваясь с воздухом. Время пребывания частиц в циклонной камере выбирается достаточным для выгорания грубой пыли (размер частиц – 200 мкм) или дробленого топлива (размер частиц до 5 мм).

Слоевые топки.По способу механизации операций обслуживания (подача топлива, шировка слоя, удаление золв и шлака) слоевые топки делятся на ручные (немеханизированные), полумеханические и механические.В полумеханических топках механизирована часть операций. В механических топках механизированы все операции.

Классификации наиболее типичных и относительно широко распространенных топочных устройств со слоевым сжиганием топлива показана на рис.15.2.

В зависимости от способа организации процесса сжигания топлива слоевые топки можно разделить на три группы:

1) с неподвижной колосниковой решеткой и неподвижным слоем топлива (рис.15.2,а, б);

2) с неподвижной колосниковой решеткой и перемещением топлива по решетке (рис.15.2 в, г, д);

3) с подвижной колосниковой решеткой и движущимся вместе с ней слоем топлива (рис.15.2 е).

В показанную на рис.15.2,а топку топливо загружают вручную и вручную удаляют очаговые остатки через зольник. Из-за большой затраты физического труда топки этого типа используют только для котлов малой паропроизводительности (до 0,5 кг/с).

На рис.15.2,б показана полумеханическая топка с пневмомеханическим забрасывателем (ПМЗ) (рис.15.3) и ручными поворачивающимися колосниками (РПК).

Топливо забрасывается питателем ПМЗ и равномерно распределяется по решетке, Удаляют очаговые остатки путем их сбрасывания в зольный бункер при повороте колосников около своей оси от ручного привода. В топке, показанной на рис. 15.2, в, загрузка осуществляется под воздействием собственного веса топлива. Топки с наклонной решеткой (с углом 40-50, что соответствует углу естественного откоса сжигаемого топлива) используют обычно для сжигания древесных отходов и кускового торфа. Возвратно-поступательное движение колосников на наклонно-переталкивающей решетке (рис. 15.2,г) дает возможность осуществить непрерывную шуровку слоя топлива, В таких топках возможно сжигание горючих сланцев, бурых углей с большой зольностью и повышенной влажностью и каменных углей с большим выходом летучих веществ.

Топки с шурующей планкой (рис. 15.2,д) предназначены для сжигания многозольных бурых и неспекающихся каменных углей. Шурующая планка выполняется в виде трехгранной призмы из литого чугуна или стали. Угол наклона передней плоскости к горизонтальной плоскости составляет 35, а задней – 15. При движении вперед (к задней стенке топки) топливо подрезается задней гранью и осуществляется шуровка горящего слоя топлива.

Камерные топки для сжигания твердого топливаиспользуют в котельных агрегатах средней (10-42 кг/с) и большой ( 42 кг/с) производительности.

Основные преимущества камерных топок заключаются в следующем:

1) возможность экономичного использования практически всех сортов угля, в том числе и низкокачественных, которые трудно сжигать в слое;

2) хорошее перемешивание топлива с воздухом, что позволяет работать с небольшим избытком воздуха (а=1,2-1,25);

3) возможность повышения единичной мощности котельного агрегата:

4) относительная простота регулирования режима работы и, следовательно, возможность полной автоматизации топочного процесса.

Сжигание топлива.

Сжигание твердого топлива в факеле. Большое значение для работы пылеугольных топок имеет конструкция применяемых горелок. Горелки должны обеспечивать хорошее перемешивание топлива с воздухом, надежное зажигание аэросмеси, максимальное заполнение факелом топочной камеры и легко поддаваться регулированию по производительности в заданных пределах.

Сжигание мазута и газов в топках.Жидкое топливо, сжигаемое в топках, подвергается предварительному распылению с помощью форсунки, являющейся элементом горелки. Пол горелкой в общем случае понимается агрегат, включающий помимо форсунки воздухонаправляющий аппарат, запальное устройство и механизм управления.

Качественное сжигание жидкого топлива обуславливается тонкостью его распыления. Для этой цели используют форсунки, которые, кроме того, обеспечивают необходимый диапазон регулирования расхода топлива и устойчивое зажигание смеси.

В зависимости от способа распыления топлива форсунки подразделяются на четыре класса: механические, паровые, воздушные (пневматические) и комбинированные. На рис.15.4 показаны принципиальные схемы применяемых форсунок.

Форсунки с механическим распылением разделяют на прямоструйные, центробежные и ротационные. В прямоструйных форсунках (Рис.15.4,а) дробление струи топлива на мельчайшие капли происходит при его продавливании под значительным давлением (1-2 Мпа) через сопло малого диаметра.

В центробежных форсунках (Рис.15.4,б,в) топливо распыляется под действием центробежных сил, возникающих при закручивании топливного потока.

В ротационных форсунках (Рис.15.4,г) топливо подается внутрь быстро вращающегося распыливающегося стакана, где оно растекается под действием центробежных сил, образуя тонкую пленку. На выходной кромке стакана тонкая пленка подхватывается подводимым первичным воздухом.

Паровые и пневматические форсунки можно объединить в один класс – форсунки с распыливающей средой. В паровых форсунках (Рис.15.4,д) в качестве такой среды используют водяной пар с давлением 0,4-1,6 Мпа., а в пневматических форсунках (Рис.15.4,е) используют воздух низкого (0,002-0,008 Мпа) и высокого (0,2-1 Мпа и выше) давления.

Газовые горелки бывают:

кинетические - полного предварительного смешения (газ с воздухом смешивается до выхода из горелки);

диффузионно-кинетические – частичного предварительного смешения;

диффузионные – внешнего смешения.

По способу подачи воздуха горелки делятся на инжекционные и дутьевые (принудительной подачей воздуха).

На рис.15.5 показаны основные принципиальные схемы газовых горелок.


Наши рекомендации