Принцип относительности в механике и электродинамике.

После того как во второй половине XIX в. Максвеллом были сформулированы основные законы электродинамики, возник вопрос: распространяется ли принцип относительности, справедливый для механических явлений, и на электромагнитные явления? Иными словами, протекают ли электромагнитные процессы (взаимодействие зарядов и токов, распространение электромагнитных волн и т. д.) одинаково во всех инерциальных системах отсчета? Или, быть может, равномерное прямолинейное движение, не влияя на механические явления, оказывает некоторое воздействие на электромагнитные процессы?

Согласно законам электродинамики скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна с = 3 • 108 м/с. Но в соответствии с законом сложения скоростей механики Ньютона скорость может быть равна скорости света только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся по отношению к этой избранной системе отсчета со скоростью Принцип относительности в механике и электродинамике. - student2.ru , скорость света должна уже быть равна Принцип относительности в механике и электродинамике. - student2.ruПринцип относительности в механике и электродинамике. - student2.ru . Это означает, что если справедлив обычный закон сложения скоростей, то при переходе от одной инерциальной системы отсчета к другой законы электродинамики должны меняться так, чтобы в этой новой системе отсчета скорость света уже была равна не Принцип относительности в механике и электродинамике. - student2.ru , а Принцип относительности в механике и электродинамике. - student2.ru - Принцип относительности в механике и электродинамике. - student2.ru .

Таким образом, обнаружились определенные противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности. Возникшие трудности пытались преодолеть тремя различными способами.

Первый способ:объявить несостоятельным принцип относительности в применении к электромагнитным явлениям. Эту точку зрения разделял великий голландский физик, основатель электронной теории X. Лоренц. Электромагнитные явления еще со времен Фарадея рассматривались как процессы, происходящие в особой, всепроникающей среде, заполняющей все пространство, — мировом эфире. Инерциальная система отсчета, покоящаяся относительно эфира, — это согласно Лоренцу особая, преимущественная система отсчета. В ней законы электродинамики Максвелла справедливы и наиболее просты по форме. Лишь в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.

Второй способ: считать неправильными уравнения Максвелла и пытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы отсчета к другой (в соответствии с обычными, классическими представлениями о пространстве и времени) не менялись. Такая попытка, в частности, была предпринята Г. Герцем. По Герцу, эфир полностью увлекается движущимися телами и поэтому электромагнитные явления протекают одинаково независимо от того, покоится тело или движется. Принцип относительности остается справедливым.

Наконец, третий способ: отказаться от классических представлений о пространстве и времени, с тем чтобы сохранить как принцип относительности, так и законы Максвелла. Это наиболее революционный путь, ибо он означает пересмотр в физике самых глубоких, основных представлений. С данной точки зрения оказываются неточными не уравнения электромагнитного поля, а законы механики Ньютона, согласующиеся со старыми представлениями о пространстве и времени. Изменять нужно законы механики, а не законы электродинамики Максвелла.

Единственно правильным оказался именно третий способ. Последовательно развивая его, А. Эйнштейн пришел к новым представлениям о пространстве и времени. Первые два пути, как оказалось, опровергаются экспериментом.

Точка зрения Лоренца, согласно которой должна существовать избранная система отсчета, связанная с мировым эфиром, пребывающим в абсолютном покое, была опровергнута прямыми опытами.

Если бы скорость света была равна 300 000 км/с только в системе отсчета, связанной с эфиром, то, измеряя скорость света в произвольной инерциальной системе отсчета, можно было бы обнаружить движение этой системы отсчета по отношению к эфиру и определить скорость этого движения. Подобно тому как в системе отсчета, движущейся относительно воздуха, возникает ветер, при движении по отношению к эфиру (если, конечно, эфир существует) должен быть обнаружен «эфирный ветер». Опыт по обнаружению «эфирного ветра» был поставлен в 1881 г. американскими учеными А. Майкельсоном и Э. Мор л и по идее, высказанной за 12 лет до этого Максвеллом.

В этом опыте сравнивалась скорость света в направлении движения Земли и в перпендикулярном направлении. Измерения проводились очень точно с помощью специального прибора — интерферометра Майкельсона. Эксперименты ставились в разное время суток и различные времена года. Но всегда получался отрицательный результат: движения Земли по отношению к эфиру обнаружить не удалось.

Таким образом, идея о существовании преимущественной системы отсчета не выдержала опытной проверки. В свою очередь, это означало, что никакой особой среды — «светоносного эфира», с которой можно было бы связать такую преимущественную систему отсчета, не существует.

При попытках Герца изменить законы электродинамики Максвелла выяснилось, что новые уравнения неспособны объяснить ряд наблюдаемых фактов. Так, согласно теории Герца движущаяся вода должна полностью увлекать за собой распространяющийся в ней свет, так как она увлекает эфир, в котором свет распространяется. Опыт же показал, что в действительности это не так.

Согласовать принцип относительности с электродинамикой Максвелла оказалось возможным, только отказавшись от классических представлений о пространстве и времени, согласно которым расстояния и течение времени не зависят от системы отсчета.

Наши рекомендации