Доходность финансовых активов

Собственно доходность представляет собой относительный показатель, характеризующий отношение дохода на соответствующий актив за определенный период (обычно за год) к рыночной цене актива[1]. Существует несколько подходов к определению показателя доходности. В частности, различают доходность ожидаемую и фактическую (рассчитываемую по фактическим данным). Как следует из предыдущих разделов, основную роль в оценке и анализе играет именно ожидаемая доходность. При расчете доходности для конкретных видов активов может учитываться как собственно доход (дивиденд, процент и др.), так и прирост курсовой стоимости актива.

В наиболее общем виде полная доходность за период рассчитывается как отношение дохода на актив плюс прирост его курсовой стоимости за период к рыночной цене на начало периода

доходность финансовых активов - student2.ru (2.20)

Если не учитывать прирост курсовой стоимости актива, то получаем формулу расчета текущей (в случае акций - дивидендной) доходности:

доходность финансовых активов - student2.ru (2.21)

В формулах (2.20) и (2.21) Dt представляет собой доход на актив за год; Pt-1 - цену актива в начале года (в текущий момент), Pt - цену актива в конце года.

Показатель текущей доходности для купонной облигации рассчитывается как отношение годового купонного дохода к ее текущей рыночной цене.

Пример. Облигация номинальной стоимостью 1000 руб. имеет ставку купонной доходности 10% годовых с поквартальной выплатой дохода. При курсовой стоимости в 976 руб. показатель текущей доходности облигации составит: 1000*0.10/976 = 0.10246, или 10.246%.

Однако, несмотря на простоту исчисления, текущая доходность не может рассматриваться как вполне корректный показатель доходности финансового инструмента. Наиболее корректным с финансовой точки зрения является показатель полной доходности.

Полная доходность наиболее просто определяется для бессрочных облигаций и привилегированных акций, а также бескупонных облигаций: для этого достаточно разрешить соответственно уравнения (2.11') или (2.14) относительно ставки r.

Для купонных облигаций основным является показатель доходности к погашению (YTM – от английского Yield to Maturity). Указанный показатель применяемый, как это следует из названия, только к срочным (погашаемым) облигациям, определяется как "процентная ставка, при которой дисконтированная стоимость всех будущих купонных выплаты по облигации, а также ее номинальной стоимости равна ее текущей рыночной цене" [Kohn]. При этом предполагается, что все получаемые купонные платежи могут быть реинвестированы с нормой прибыли, равной этому самому показателю доходности. Как следует из определения, точное значение показателя YTM находится как корень уравнения (2.15) при известной рыночной цене облигации. В соответствии с теоремой Декарта число положительных корней указанного уравнения равно числу перемен знаков в системе коэффициентов этого многочлена. В нашем случае знак меняется один раз. Так как в общем случае уравнение (2.15) представляет собой алгебраическое уравнение высокой степени, решение его без применения финансового калькулятора затруднительно. Поэтому часто применяются приближенные формулы (см., например, [Ковалев],[Kohn], и др).

Пример. Рассчитать доходность к погашению облигации номиналом 1000 руб., которая продается за 1041 руб. Купонная ставка составляет 10% годовых, выплата процентов производится два раза в год. До погашения облигации осталось 12 месяцев.

Решение. Так как до погашения облигации осталось всего два купонных платежа, полугодовую ставку доходности к погашению YTMполуг можно найти из квадратного уравнения:

1041 = 50/(1+ YTMполуг) + (50+1000)/(1+ YTMполуг)2,

которое имеет один положительный корень YTMполуг = 0.0286. Годовая ставка YTM будет определена путем начисления YTMполуг два раза по правилу сложного процента из уравнения

(1+ YTMполуг)2 = 1+ YTM,

и составит 5.80%.

Для сравнения, если бы выплата процентов по облигации производилась один раз в год при прочих равных условиях, доходность к погашению была бы определена из уравнения

1041 = (100+1000)/(1+ YTM),

составила бы 5.67%.

Полная доходность обыкновенной акции может в общем виде быть найдена из уравнения (2.17). Для случая постоянного темпа прироста дивиденда полная ожидаемая доходность определится как результат разрешения уравнения (2.19) относительно ставки r.

доходность финансовых активов - student2.ru (2.22)

Другими словами, ставка полной доходности равна дивидендной доходности увеличенной (уменьшенной) на темп роста дивиденда.

Наши рекомендации