Особенности современного этапа развития науки. Перспективы научно-технического прогресса.
Современная, постнеклассическая наука имеет две основные характеристики: 1) распространение идей синергетики на всю сферу научного познания; 2) разработка нового взгляда на эволюцию в рамках теории глобального эволюционизма. Концепция самоорганизации в настоящее время приобретает все больше значения, становясь парадигмойисследования обширного класса систем и процессов, происходящих в них. В 70-х годах XX века возникла новая наука – синергетика, изучающая механизмы самоорганизации и развития. Областью ее исследований является изучение эволюции различных структур, относительная устойчивость которых поддерживается благодаря притоку энергии и вещества извне. В основе синергетики лежит, среди прочих, важное утверждение о том, что материальные системы могут быть открытыми и закрытыми, равновесными и неравновесными, устойчивыми и неустойчивыми, линейными и нелинейными, статическими и динамическими. Принципиальная же возможность процессов самоорганизации обусловлена тем, что в целом все живые и неживые, природные и общественные системы являются открытыми, неравновесными, нелинейными.
Возникновение синергетики связано, в основном, с именами бельгийского физика и химика И. Пригожина (лауреата Нобелевской премии 1977 г.), немецкого физика Г. Хакена и другого немецкого ученого М. Эйгена, а также наших отечественных ученых Б. Белоусова и А. Жаботинского.
И. Пригожин, разрабатывая современную термодинамику необратимых процессов (неравновесную термодинамику) открыл явление образования упорядоченных структур из хаотического, неупорядоченного состояния системы, то есть самоорганизацию, и сформулировал теорему о минимуме производства энтропии в стационарном неравновесном состоянии. К своим идеям он пришел, анализируя специфические химические реакции, которые впервые экспериментально были изучены Б. Белоусовым и А. Жаботинским. И. Пригожин со своими сотрудниками (И. Стенгерс) построили математическую модель таких реакций, а также показали, что в сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса к порядку, организованности.
Г. Хакен, изучая процессы самоорганизации, происходящие в лазере, назвал новое направление исследованийсинергетикой, что в переводе с греческого означает совместное действие, или взаимодействие, и хорошо передает смысл и цель нового подхода к изучению явлений.
М. Эйген доказал, что открытый Ч. Дарвином принцип отбора справедлив и на микроуровне, а генезис (происхождение) жизни есть результат процесса отбора, происходящего на молекулярном уровне. Он показал, что сложные органические структуры с адаптационными характеристиками возникают благодаря эволюционному процессу отбора на основе автокатализа.
Основные понятия и принципы синергетики.
Порядок и хаос. В результате протекания процессов в изолированных системах сами системы переходят в состояние равновесия, которое соответствует максимальному беспорядку системы – равновесный тепловой хаос. Таким образом, самоорганизация, или эволюция в случае замкнутой системы приводит ее в состояние максимального беспорядка. В реальности, тем не менее, часто наблюдаются совершенно противоположные явления.
Уже теория Канта и Лапласа об образовании упорядоченной Солнечной системы из хаотических туманностей противоречила II началу термодинамики. Но особенно ярко проявилось противоречие II начала термодинамики с эволюционной теорией Дарвина. Ведь согласно ей, в мире живого естественно протекающие процессы ведут к усложнению форм и структур, к увеличению порядка, избавлению от хаоса и удалению от равновесия. Другими словами, самоорганизация в живой природе приводит систему к прямо противоположному состоянию, чем самоорганизация в неживых системах.Все это привело к появлению понятия открытой системы, которое и позволило устранить упомянутые противоречия.
Открытость систем. Такие понятия как изолированная (закрытая) система, необратимые процессы являются идеализацией. При изучении обратимых процессов (например, качание маятника в вакууме при отсутствии трения) нет смысла говорить о направлении течения времени, так как прошлое, настоящее и будущее в этом случае не отличаются. Поэтому в уравнениях обратимых процессов время выступает всего лишь как параметр, который можно изменять. Но в реальности в случае с маятником всегда присутствует трение, колебания маятника будут затухающими, и прошлое, настоящее и будущее будут уже отличаться. Ранее уже говорилось о том, что необратимых процессов в живой природе эволюционным принципом стало II начало термодинамики, утверждающее, что энтропия изолированной системы возрастает. Именно рост энтропии устанавливает направление протекания процесса, то есть «стрелу времени».
В своей книге «Что такое жизнь» выдающийся австрийский физик Э. Шредингер указал на то, что средство, при помощи которого организм поддерживает себя на достаточно высоком уровне упорядоченности, то есть на достаточно низком уровне энтропии, в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды. Другими словами, организм извлекает из окружающей среды негэнтропию. Открытая система заимствует энергию и вещество из окружающей его среды и одновременно выводит в окружающую среду отработанное вещество и отработанную энергию. Вырабатывая и заимствуя энергию, открытая система производит энтропию, но она не накапливается в ней, а выводится в окружающую среду. С поступлением энергии и вещества в открытую систему ее неравновесность возрастает, разрушаются прежние связи между элементами и возникают новые, которые приводят к новой структуре, новым кооперативным процессам.
Нелинейность. Сложные системы являются нелинейными. Для их описания используются нелинейные математические уравнения, то есть уравнения, которые могут иметь несколько качественно различных решений. Физически это означает возможность различных путей эволюции системы.
При определенных условиях суммарное уменьшение энтропии за счет обмена потоками с внешней средой может превысить ее внутреннее производство. Тогда неупорядоченное однородное состояние системы может потерять устойчивость. В ней возникают и могут возрасти до макроскопического уровня так называемые крупномасштабные флуктуации. При этом из хаоса могут возникнуть структуры, которые последовательно начнут переходить во все более упорядоченные. Образование этих структур происходит не из-за внешнего воздействия, а за счет внутренней перестройки системы, поэтому это явление и получило название самоорганизации. При этом энтропия, отнесенная к тому же значению энергии, убывает.
Бифуркации. Выше было сказано, что нелинейная система уравнений, которой описывается практически любая реальная сложная система, имеет не одно, а подчас целый спектр решений. Ответвления от известного решения появляются при изменении значения параметров системы. Поэтому вводится еще одно понятие - управляющие параметры (параметры порядка). Изменения управляющих параметров способны вызвать катастрофические, то есть большие скачки переменных системы, и эти скачки осуществляются практически мгновенно.
Усложнение структуры и поведения системы тесно связано с появлением новых путей решения в результате бифуркаций. В сильно неравновесных условиях процессы самоорганизации соответствуют «тонкому взаимодействию» между случайностью и необходимостью, флуктуациями и детерминистскими законами. Вблизи бифуркаций, то есть резких, «взрывных» изменений системы, основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями преобладает детерминизм. Ситуацию, возникающую после воздействия флуктуации на систему и возникновения новой структуры, И. Пригожин назвал порядком через флуктуацию или «порядком из хаоса». Флуктуации могут усиливаться в процессе эволюции системы или затухать, что зависит от эффективности «канала связи» между системой и внешним миром.
Глобальный эволюционизм.
Между социально-культурной эволюцией и эволюцией биологической существует определенное сходство. Многие ученые характеризуют социальную эволюцию как продолжение биологической эволюции другими средствами. Сама культура при этом является мощным средством приспособления к реальности. Однако сходство не означает тождества, и если рассматривать социально-культурную эволюцию как продолжение биологической эволюции, необходимо учитывать тот факт, что процессы самоорганизации при этом значительно усложняются, а сама эволюция приобретает качественно отличный характер. В частности, в живой природе эволюция происходит путем генетической передачи наследственной информации от родителей к потомкам. В социально-экономической и культурной эволюции непосредственный опыт, приобретенный людьми в процессе приспособления к изменениям окружающей среды, не передается по наследству.
В обществе существуют свои методы и средства передачи накопленного опыта (индивидуального, социального). Это традиции, религия, искусство, системы образования и т.п. Традиции относятся к наиболее устойчивому явлению, присущему тому или иному народу или группе. Лауреат Нобелевской премии Ф. Хайек помещает их между инстинктом и разумом. Традиции сыграли решающую роль в становлении порядка в человеческой деятельности и формировании цивилизации. Традиции придают социальной эволюции более ускоренный характер по сравнению с биологической. Вместе с тем между биологической и социальной эволюцией нет непроходимой пропасти – они связаны между собой определенными свойствами, присущими как животным, так и человеку. Важнейшим из них является способность к подражанию. Уже у высших животных эта способность является существенным фактором приспособления к изменениям ОС. Многие ученые считают, что именно обучение путем подражания в сочетании с трудовой деятельностью привело в действие высокоэффективный механизм социально-культурной эволюции.
С помощью понятия энтропии стало возможным оценивать количественно такие понятия, как «хаос» и «порядок». Информация и энтропия связаны потому, что они характеризуют реальную действительность с точки зрения упорядоченности и хаоса (информация – мера упорядоченности, энтропия – мера хаоса). С этой точки зрения в нашем обществе, в экономике в настоящее время довольно энтропия велика. Нарастание энтропии в обществе имеет множество проявлений. Это рост преступности, нарастание числа аварий и катастроф, низкая производительность, износ технологического оборудования и т.п.
Если система эволюционирует в направлении упорядоченности, то ее энтропия уменьшается. Но это требует целенаправленных усилий, внесения информации, то есть управления. Человек всю жизнь борется с энтропией, гася ее извлечением из окружающей среды отрицательной энтропии – информации. Таким образом, явления развития удобно рассматривать в координатах, связанных с понятиями энтропии и информации (негэнтропии). Это позволяет наглядно представить мысленную (концептуальную) модель процессов самоорганизации в виде сужающейся спирали.
Подобная модель самоорганизации может быть применена к биологическим, социальным, экономическим, культурным и другим системам. Главное здесь – возрастание уровня организации, связанное с уменьшением неопределенности по мере накопления информации. Так, из биологии известно, что число принципиально возможных одноклеточных организмов намного больше того, что есть на самом деле. Низших биологических форм много, а Человек – один (сходящаяся спираль).
Развитие не всегда имеет восходящий характер. Возможны локальные возрастания энтропии, «обратные скачки». Например, экономическим формациям присущи как восходящие, так и нисходящие линии развития. Пока производственные отношения данной формации более или менее соответствуют уровню производительных сил, последние развиваются ускоренно, по восходящей линии. Когда же устоявшиеся производственные отношения начинают тормозить продолжающийся рост производительных сил, наступает застойная или даже нисходящая стадия в развитии формации, что подводит общество к революционной ситуации, к новому скачку в развитии, происходящему в окрестностях точки бифуркации.
Именно флуктуации приводят в этом случае к «расшатыванию» старого порядка и возникновению нового. Энтропия падает, количество информации (негэнтропия) растет. Управление процессами и сохранение динамического равновесия систем основано на принципе обратной связи, когда на основе полученных обратных сигналов система возвращается в исходное состояние. Самоорганизация открытых систем опирается на принцип положительной обратной связи, согласно которому изменения, появляющиеся в системе, не устраняются, а наоборот, накапливаются и усиливаются, что приводит к возникновению нового порядка и структуры. Чем выше в своем эволюционном развитии находится система, тем более сложными и многочисленными будут факторы, которые влияют на ее самоорганизацию.
Некоторые современные исследователи справедливо полагают, что синтетическая теория эволюции, которая господствовала в науке до второй половины ХХ столетия, не является достаточно всеобъемлющей моделью развития жизни и разрабатывают системную теорию эволюции (теорию глобального эволюционизма), в которой подчеркивается следующее:
1. Эволюция протекает в открытых системах, и необходим учет взаимодействия биосферных геологических и космических процессов, которое, по-видимому, дает импульс для развития живых систем. Значительные события из истории жизни должны, таким образом, рассматриваться в связи с развитием планеты.
2. Эволюционные импульсы распространяются от высших системных уровней к низшим: от биосферы к экосистемам, сообществам, популяциям, организмам, геномам. Прослеживание причинно-следственных связей не только «снизу вверх» (от генных мутаций к популяционным процессам), как это свойственно традиционному подходу, но и «сверху вниз», позволяет не уповать всякий раз на случайность при построении модели эволюции.
3. Характер эволюции изменяется с течением времени, то есть эволюционирует сама эволюция: значение тех или иных признаков приспособленности и неприспособленности, по которым осуществляется естественный отбор, в процессе эволюции и биологического прогресса падает или возрастает, как, например, роль индивидуального развития, роль индивида в историческом развитии.
4. Направленность эволюции определяется системными свойствами, задающими ее цель, что позволяет нам понять смысл биологического прогресса. Действительно, в живых (открытых) системах стационарное состояние соответствует минимальному производству энтропии. Такие системы, следовательно, имеют цель, определенное состояние, к которому они стремятся. Это позволяет объяснить, почему эволюция не остановилась на уровне бактериальных сообществ, а продвинулась дальше по пути, который привел к появлению высших животных и человека.