Отражение в плоскости симметрии

Отражение— это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зер-

кало в точности воспроизводит то, что оно «видит», но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Всем, наверное, с детства знаком фильм «Королевство кривых зеркал», где имена всех героев читались в обратном порядке.

Зеркальную симметриюможно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией,хотя и не вполне строгой. Более того, зеркальная симметриясвойственна телам почти всех живых существ, и такое совпадение отнюдь не случайно. Важность понятия зеркальной симметриивряд ли можно переоценить.

Зеркальной симметриейобладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения,или просто зеркальной плоскостью.Эту плоскость можно назвать элементом симметрии,а соответствующую операцию — операцией симметрии.

Отражение в зеркале— это один из способов повторения фигуры, приводящий к возникновению симметричного узора. Если использовать не одно, а два зеркала, то можно получить устройство, названное калейдоскопом,открытое в 1819 г. Д. Брюстером. В калейдоскопе совмещаются два вида симметрии: зеркальная и поворотная. Расположив зеркала под определенным углом, можно увидеть отражение, отражение отражения и т.д. Вечно изменяющаяся череда узоров завораживает взор каждого.

Если два зеркала не пересекаются, а установлены параллельно друг другу, то вместо орнамента с элементами, расположенными по кругу, получается бесконечный узор, который повторяется и напоминает бордюр или ленту из ткани.

С трехмерными симметричными узорами мы сталкиваемся ежедневно: это многие современные жилые здания, а иногда и целые кварталы, ящики и коробки, громоздящиеся на складах, атомы вещества в кристаллическом состоянии образуют кристаллическую решетку — элемент трехмерной симметрии. Во всех этих случаях

правильное расположение позволяет экономно исполь зовать пространство и обеспечивать устойчивость.

Поворотная симметрия

Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией.Примером может служить детская игра «вертушка» с поворотной симметрией.Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

Листья и цветы многих растений обнаруживают радиальную симметрию.Это такая симметрия, при которой лист или цветок, поворчаиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Отражение в центре симметрии

Примером объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления — тоже шаровые формы.

Трансляция, или перенос фигуры

На расстояние

Трансляция, или параллельный перенос фигуры на расстояние— это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляцияв одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кри-

сталлические фигуры образуют узоры, которые не имеют естественных границ.

При изучении орнаментов, используемых в книгопечатании, были обнаружены те элементы симметрии, что и в рисунке выложенных кафельными плитами полов. Орнаментальные бордюры связаны с музыкой. В музыке элементы симметричной конструкции включают в себя операции повторения (трансляции) и обращения (отражения). Именно эти элементы симметрии обнаруживаются и в бордюрах.

Хотя в большинстве случаев музыка не отличается строгой симметрией, в основе многих музыкальных произведений лежат операции симметрии. Особенно заметны они в детских песенках, которые, видимо, поэтому так легко и запоминаются. Операции симметрии обнаруживаются в музыке средневековья и Возрождения, в музыке эпохи барокко (нередко в весьма изощренной форме). Во времена И.С. Баха, когда симметрия была важным принципом композиции, широкое распространение получила своеобразная игра в музыкальные головоломки. Одна из них заключалась в решении загадочных «канонов». Канон— это одна из форм многоголосной музыки, основанной на проведении темы, которую ведет один голос, в других голосах. Композитор предлагал какую-нибудь тему, а слушателям требовалось угадать операции симметрии, которые он намеревался использовать при повторении темы.

Природа задает головоломки как бы противоположного типа: нам предлагается завершенный канон, а мы должны отыскать правила и мотивы, лежащие в основе существующих узоров и симметрий, и наоборот, отыскивать узоры, возникающие при повторении мотива по разным правилам. Первый подходприводит к изучению структуры вещества, искусства, музыки, мышления. Второй подходставит нас перед проблемой замысла или плана, с древних времен волнующей художников, архитекторов, музыкантов, ученых.

Винтовые повороты

Трансляциюможно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси по-

136

ворота, порождает винтовую симметрию — симметрию винтовой лестницы. Пример винтовой симметрии — расположение листьев на стебле многих растений.

Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре.

В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития.

Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

Симметрия и законы роста

Внимательно приглядевшись к обступающей нас природе, можно увидеть общее даже в самых незначительных вещах и деталях. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально Относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Радиально-лучевой симметрией обладают цветы, грибы, деревья, фонтаны. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях, бьющем фонтане или столбе паров плоскости симметрии ориентированы всегда вертикально.

Таким образом, можно сформулировать в несколько упрощенном и схематизированном виде общий закон, ярко и повсеместно проявляющийся в природе: все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка.

Этому всеобщему закону подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией.

Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Симметрия подобия

Рассмотрим игрушечную матрешку, цветок розы или кочан капусты. Важную роль в геометрии всех этих природных тел играет подобие их сходных частей. Такие части, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяющим выводить их друг из друга.

К перечисленным выше операциям симметрии можно, таким образом, добавить операцию симметрии подобия,представляющую собой своеобразные аналогии трансляций, отражений в плоскостях, повороты вокруг осей с той только разницей, что они связаны с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними.

Симметрия подобия,осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола — коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно суживается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизниявляется ЖИЗНЬ, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но

138

и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

Какое из чудес могло бы с большей силой поразить человеческое воображение, чем появление новой жизни? Пространство, которое было ничем, становится деревом, яблоком, человеком. Возникновение живого существа — явление целостное, это таинство, так как человек не умеет познавать неделимое, не расчленяя его.

Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие — общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы — березе. Геометрическое подобие пронизывает все ветви древа жизни.

Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой «начала», которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.

Так же, как подобны одно другому целостные живые существа данного вида жизни, встроенные в ее непрерывно разветвляющуюся цепь, так же подобны одно другому и отдельные их члены, функционально специализированные.

Можно даже выделить, что функция зрения в целом, как и детальная структура органов зрительного восприятия, подчинена глобальному принципу организации жизни — принципу геометрического подобия.

Определяя пространственную организацию живых организмов, прямой угол,который, кстати, правит физическими процессами, организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональ

на вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой гол является объективной реальностью зрительного восприятия: выделение прямого угла осуществляют структуры сетчатки в цепи нейронных связей. Зрение чутко реагирует на кривизну прямых линий, отклонения от вертикальности и горизонтальности. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, — есть цель жизни. И сама природа и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.

СИММЕТРИЯ В ПОЗНАНИИ

Понятия симметрии и асимметрии фигурируют в науке с древнейших времен скорее в качестве эстетического критерия, чем строго научного познания. До появления идеи симметрии математика, физика, естествознание напоминали отдельные островки безнадежно изолированных друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой эпоху синтеза, когда разрозненные фрагменты научного знания сливаются в единую, целостную картину мира.В качестве одной из основных тенденций этого процесса выступает математизация научного знания.

Однако симметрию принято рассматривать не только как основополагающую картину научного знания, устанавливающую внутренние связи между системами, теориями, законами и понятиями, но и относить ее к атрибутам таким же фундаментальным, как пространство и время, движение. В этом смысле симметрия определяет структуру материального мира.

Симметрия обладает многоплановым и многоуровневым характером. Симметрию нужно рассматривать на разных уровнях не только в таких областях научного знания, как физика, математика, химия, биология и др., но

140

и в каждой отрасли отдельно. В системе физических знаний симметрия рассматривается на уровне явлений, законов, описывающих эти явления, и принципов, лежащих в основе этих законов, а в математике — при описании геометрических объектов и геометрии. Симметрия может быть классифицирована как:

■ структурная;

■ геометрическая;

■ динамическая, описывающая соответственно кристаллографический, математическийи физическийаспекты данного понятия.

Симметриюопределяют в связи с такими понятиями, как сохранениеи изменение, равновесие, упорядоченность, тождествои различие,что связано с охватом всех аспектов. Сущностью симметрии,строго говоря, является тождество противоположностей.

Симметрия — это группа преобразований.Всякое построение симметрии связано с введением того или иного равенства. Равенство относительно, и может существовать множество равенств и соответственно множество симметрий.

В ходе развития физики, особенно физики элементарных частиц, возрастает и значение принципов симметрии для познания природы, проблемы правого и левого (особенно в электротехнике, теории полей). Правое и левое — это отражение реальных отличий в реальном, объективно существующем мире.

Таким образом, раньше в естествознании понятие симметрии связывали только с представлениями о структуре предметов, т.е. определяли только пространственно-временную симметрию, теперь же на основании большого числа научных данных можно говорить о симметрии сложных естественных процессов, пространственно-временных свойств, электрических зарядов, физических полей и т.д.

Наши рекомендации