Здесь и в следующей апории предполагается, что пространство и время не имеют предела делимости.

Дихотомия:Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности. Поэтому движение никогда не начнётся.

Название «Дихотомия» (по-гречески: деление пополам) дано Аристотелем.

Летящая стрела:Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда, т.е. она не движется.

Внутренние противоречия понятия о движении ярко выявляются в знаменитой апории «Ахиллес»: быстроногий Ахиллес никогда не может догнать чере­пахи. Почему? Всякий раз, при всей скорости своего бега и при всей малости разделяющего их пространства, как только он ступит на место, которое перед тем занимала черепаха, она несколько продвинется вперед. Как бы ни уменьшалось пространство между ними, оно ведь бесконечно в своей делимости на промежутки и их надобно все пройти, а для этого необходимо бесконечное время. И Зенон, и мы прекрасно знаем, что не только Ахиллес быстроногий, но и любой хромоногий тут же догонит черепаху. Но для философа вопрос ставился не в плоскости эмпирического существования дви­жения, а в плане мысли мости его противоречивости в системе по­нятий, в диалектике его соотношения с пространством и временем.

Апория «Дихотомия»: предмет, движущийся к цели, вначале должен пройти половину пути к ней, а чтобы пройти эту половину, он должен пройти ее половину и т.д., до бесконечности. Стало быть, тело не достигнет цели, т.к. путь его бесконечен.

Аристотель указывает, что Зенон бесконечно делимое смешивает с бесконечно большим. Зенон рассматривает пространство как сумму конечных отрезков и противопоставляет ему бесконечную непрерывность времени. В «Ахилесе и Черепахе» невозможность движения истекает из того, что нельзя пройти в конечное время бесконечное число половинок пути. Зенону просто не было знакомо понятие суммы бесконечного ряда, иначе он увидел бы, что бесконечное число слагаемых дает все же конеч­ный путь, который Ахиллес, двигаясь с постоянной скоростью, без сомнения, преодолеет за надлежащее(конечное) время.

Таким образом, элеатам не удалось доказать, что движения нет. Они своими тонкими рассуждениями показали то, что едва ли кто из их современников осмысливал,– что такое движение? Сами они в своих размышлениях поднялись на высокий уровень фило­софских поисков тайны движения. Однако они не смогли разорвать путы исторической ограниченности развития философских воззре­ний. Нужны были какие-то особые ходы мысли. Эти ходы нащупы­вали основоположники атомизма.

Другие апории («Мера», «Стадион», «Множественность», «О месте», «Медимн (мешок) зерна»). Приведем некоторые (при ответе на выбор):

Мера:

«Доказав, что, «если вещь не имеет величины, она не существует», Зенон, прибавляет: «Если вещь существует, необходимо, чтобы она имела некоторую величину, некоторую толщину и чтобы было некоторое расстояние между тем, что представляет в ней взаимное различие». То же можно сказать о предыдущей, о той части этой вещи, которая предшествует по малости в дихотомическом делении. Итак, это предыдущее должно также иметь некоторую величину в своё предыдущее. Сказанное один раз можно всегда повторять. Таким образом, никогда не будет крайнего предела, где не было бы различных друг от друга частей. Итак, если есть множественность, нужно, чтобы вещи были в одно и то же время велики и малы и настолько малы, чтобы не иметь величины, и настолько велики, чтобы быть бесконечными»… У чего нет совершенно ни величины, ни толщины, ни объёма, того и вовсе нет.

Аргумент Зенона, вероятнее всего, направлен против пифагорейского представления о том, что тела «состоят из чисел». В самом деле, если мыслить число как точку, не имеющую величины («толщины», протяженности), то сумма таких точек (тело) тоже не будет иметь величины, если же мыслить число «телесной, как имеющее некоторую конечную величину, то, поскольку тело содержит бесконечное количество таких точек (ибо тело, по допущению Зенона, можно делить «без предела»), оно должно иметь бесконечную величину. Из этого следует, что невозможно мыслить тело в виде суммы неделимых единиц, как это мы видели у пифагорейцев.

Медимн зерна:Каждое отдельное зерно падает на землю бесшумно. Тогда отчего медимн (большоймешок) зерна падает с шумом? .

Формулировка Зенона подвергалась критике, так как парадокс легко объясняется ссылкой на порог восприятиязвука (отдельное зерно падает не бесшумно, а очень тихо, поэтому звука падения не слышно). Смысл апории: доказать, что часть не подобна целому (качественно отличается от него) и, следовательно, бесконечная делимость невозможна.

Аргументы Зенона приводят к парадоксальным, с точки зрения «здравого смысла», выводам, но их нельзя было просто отбросить как несостоятельные, поскольку и по форме, и по содержанию удовлетворяли математическим стандартам той поры. Разложив апории Зенона на составные части и двигаясь от заключений к посылкам, можно реконструировать исходные положения, которые он взял за основу своей концепции. Важно отметить, что в концепции элеатов, как и в дозеноновской науке, фундаментальные философские представления существенно опирались на математические принципы. Видное место среди них занимали следующие аксиомы:

1. Сумма бесконечно большого числа любых протяженных величин должна быть бесконечно большой;

2. Сумма любого числа непротяженных величин всегда равна нулю и никогда не может стать некоторой заранее заданной протяженной величиной.

Именно в силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему математических знаний. Целый ряд важнейших математических построений, считавшихся до этого несомненно истинными, в свете зеноновских построений выглядели как противоречивые. Рассуждения Зенона привели к необходимости переосмыслить такие важные методологические вопросы, как природа бесконечности, соотношение между непрерывным и прерывным и т.п. Они обратили внимание математиков на непрочность фундамента их научной деятельности и таким образом оказали стимулирующее воздействие на прогресс этой науки.

Наши рекомендации