Поляризация диэлектриков. Виды поляризации
ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ.
Классификация и общие свойства диэлектриков. Температурные зависимости.
ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ.
- вещества, способные поляризоваться в электрическом поле. В них существует внутреннее электрическое поле и равномерное распределение потенциалов.
Носители заряда в диэлектриках:
1. В газах
1) Положительные и отрицательные ионы. Причина: ионизация молекул газа.
2) Электроны в сильных полях.
2. В жидкостях
1) Ионы. Причина: диссоциация молекул жидкости.
2) Коллоидные заряженные частицы в эмульсиях и суспензиях.
3. В твердых
1) Ионы.
2) Дефекты кристаллической решетки.
3) Электроны или дырки проводимости.
Бывают полярные и неполярные.
Рисунок 50.
Основные электрические свойства диэлектриков:
1. Поляризация
2. Электропроводность
3. Диэлектрические потери
4. Электрическая прочность
При расчетах на постоянном токе учитывают только сквозной ток.
Поляризация диэлектриков. Виды поляризации.
Поляризация – процесс смещения и упорядочения зарядов в диэлектрике под действием внешнего электрического поля. Численной мерой поляризации является поляризованность диэлектрика – количество электрического момента в единице объема диэлектрика:
(1.2) | |
(1.2) |
где dp - электрический момент элемента диэлектрика;
dV – объем элемента диэлектрика
- напряженность внешнего электрического поля, В/м,
- диэлектрическая постоянная,
- относительная диэлектрическая проницаемость.
Поляризация определяет свойство диэлектриков образовывать электрическую емкость. В то же время поляризация диэлектриков, происходящая с затратами энергии и выделением теплоты, вызывает потери электрической энергии в материалах-изоляторах, особенно на высоких частотах, когда процессы поляризации диэлектрика повторяются большее количество циклов в единицу времени. Поэтому поляризацию описывают параметрами диэлектрика и .
Различают несколько видов поляризации.
2.2.1. Упругая поляризация – совершается в диэлектрике без выделения энергии и рассеяния тепла. Различают электронную и ионную упругие поляризации
Электронная поляризация – упругое смещение и деформация электронных оболочек атомов, приводящая к разделению геометрических центров положительного и отрицательного зарядов в атоме. Для установления требуемся минимальное время – 10-15с, т.е. образуется практически мгновенно. Поляризуемость при электронной поляризации не зависит от температуры, а диэлектрическая проницаемость плавно уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением количества атомов в единице объема (рис. 2.2). Электронная поляризация наблюдается у всех диэлектриков независимо от их химического состава и внутренней структуры.
Ионная поляризация – упругое смещение ионов – узлов кристаллической решетки, характерна для материалов с ионным строением. С повышением температуры усиливается благодаря ослаблению межионных сил. Время установления поляризации 10-13с – больше, чем у электронной поляризации, так как ионы массивнее.
Так как процессы электронной и ионной поляризации происходят практически мгновенно, величина деэлектрической проницаемости материалов с упругой поляризацией постоянна и от частоты не зависит.
2.2.2. Релаксационная (неупругая) поляризация – медленные виды поляризации. Для их осуществления требуется затратить определенную энергию, которая затем выделяется в виде тепла при возвращении диэлектрика в исходное состояние. Различают дипольно-релаксационную, ионно-релаксационную, электронно-релаксационную, резонансную и миграционную виды поляризации.
Дипольно-релаксационная поляризация характерна для веществ с дипольным строением и вызывается переориентацией молекул-диполей в приложенном к диэлектрику внешнем электрическом поле. В зависимости от массы, плотности упаковки и размеров диполей время установления поляризации сставляет 10-10..10-2 с. После снятия поля, вызвавшего поляризацию, они возвращаются в исходное хаотичное состояние под действием теплового движения частиц, при этом поляризованность материала убывает по закону
(1.2) |
где - поляризованность диэлектрика в момент снятия внешнего поля, Кл/м2,
- время релаксации (время, за которое количество упорядоченных диполей убывает в е раз), с.
Зависимость дипольной поляризации от температуры изображена на рис. 2.3. Спад графика в области низких температур обусловлен плотной упаковкой ионов и трудностью их переориентации, а в области высоких температур – малым количеством диполей, приходящимся на единицу объема диэлектрика.
Рис. 2.3. Зависимость дипольно-релаксационной поляризации от температуры
Дипольно-релаксационная поляризация наблюдается у всех полярных веществ. У твердых диэлектриков поляризация вызывается не поворотом самой молекулы, а смещением имеющихся в ней полярных радикалов, например, Na+ и Cl- в молекуле поваренной соли.
С увеличением частоты дипольная поляризация и диэлектрическая проницаемость убывают, поэтому полярные диэлектрики являются частотно-зависимыми и не применяются на высоких частотах.
Ионно-релаксационная поляризация наблюдается в материалах с неплотной упаковкой ионов и вызвана физическим перемещением ионов в вакансии кристаллической решетки под действием внешнего электрического поля. После снятия поля поляризация постепенно ослабевает. Наблюдается только для твердых веществ (рис. 3.х), так как в расплавленном состоянии ионы становятся свободными и материал становится проводником с электролитической проводимостью.
Рис. 3.х. Зависимость ионно-релаксационной поляризации
от температуры
Электронно-релаксационная поляризация вызвана перемещением от одного иона к другому (в направлении поля) избыточных (дефектных) электронов и дырок. Характерна для веществ с электронной электропроводностью, имеет центральный максимум в зависимости и уменьшается с ростом частоты.
Резонансная поляризация. Наблюдается в диэлектриках на световых частотах и обусловлена резонансом собственных колебаний (вращения) электронов или ионов и частоты внешнего электромагнитного поля (света). На практике не применяется и практически не влияет на свойства диэлектрика в области частот, используемой электроникой и микроэлектроникой.
Миграционная поляризация – проявляется в твердых телах неоднородной структуры при макроскопических неоднородностях и наличии примесей. Причинами поляризации являются наличие проводящих и полупроводящих включений в реальных технических диэлектриках(бумага, ткань). При миграционной поляризации электроны и ионы перемещаются в пределах проводящих включений, образуя большие поляризованные области. Данная поляризация связана с большими потерями энергии и наблюдается уже на низких частотах, время релаксации таких диэлектриков – минуты и секунды.
В реальных диэлектриках проявляется несколько видов поляризации одновременно, поэтому частотные и температурные зависимости поляризованности , диэлектрической проницаемости и тангенса угла диэлектрических потерь усложняются. По виду поляризации различают четыре группы диэлектриков:
1. Диэлектрики в основном с электронной поляризацией. Это неполярные и слабополярные вещества в кристаллическом и аморфном состояниях (парафин, полистирол, полиэтилен). Используют в качестве высокочастотных диэлектриков - изоляторов.
2. Диэлектрики с электронной и дипольно-релаксационной поляризацией. Это полярные органические, полужидкие и твердые материалы (смолы, целлюлоза). Используют в качестве низкочастотных диэлектриков – изоляторов и в низкочастотных конденсаторах.
3. Твердые неорганические диэлектрики с электронной, ионной и релаксационной поляризацией (слюда, кварц, стекло, керамика, ситаллы). Используются в качестве диэлектриков в высокочастотных конденсаторах и как изоляторы.
4. Сегнетодиэлектрики, обладающие всеми видами поляризации. Используются как активные (управляемые) диэлектрики.
Благодаря поляризации изменяется электрическое поле внутри диэлектрика. Диэлектрическая проницаемость характеризует ослабление внешнего поля внутренним:
(1.2) | |
где - внешнее электрическое поле, В/м,
- внутреннее электрическое поле, В/м,
- электрическое смещение, Кл/м2,
- поверхностная плотность связанных зарядовна пластинах конденсатора при наличии диэлектрика, Кл/м2,
- добавочная поверхностная плотность заряда, возникающая благодаря поляризации диэлектрика, Кл/м2
- поверхностная плотность заряда на пластинах воздушного конденсатора, Кл/м2
Для получения необходимых свойств, например, минимума температурного коэффициента емкости ТКЕ, в электрических конденсаторах может применяться сложный диэлектрик, состоящий из смеси простых материалов с разными величинами диэлектрической проницаемости. В случае использования такого диэлектрика его эффективная диэлектрическая проницаемость рассчитывается по формуле Лихтенеккера: для случая хаотического распределения компонентов:
, |
где q1 и q2 – объемные концентрации(доли) компонентов.
ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ.
- процесс смещения и упорядочения носителей заряда под действием электрического поля
- состояние вещества, при котором элементарный его объем приобретает электрический момент
Причины: внешнее электрическое поле, механическое напряжение, освещенность и другие факторы внешней среды, спонтанная поляризация.
Рисунок 51.
Поляризация – причина появления электрической емкости.
Диэлектрики:
1) линейные – изоляция, кондесы постоянной емкости
2)нелинейные – датчики, кондесы управляемого напряжения
Рисунок 52.
Полярные состоят из полярных молекул (вода). Неполярные – из неполярных, у которых электрический момент = 0 (газы, поваренная соль).
Виды поляризации:
1. Быстрая поляризация (упругая) – происходит без рассеяния энергии.
1) Электронная поляризация – смещение электронного облака относительно центра ядра атома. Время возникновения и ликвидации – 10^-14…10^-15 с. Поляризуемость не зависит от температуры, но диэлектрическая проницаемость зависит. Рисунок 53.
2) Резонансная поляризация – возникает при совпадении частот вращения электронов с изменением магнитного поля.
3) Ионная поляризация – смещение друг относительно друга положительных и отрицательных ионов. Время установления – 10^-11 с. Пример: поваренная соль. С ростом температуры параметры растут.
2. Релаксационная
На ее создание тратится энергия, выделяемая в виде тепла, диэлектрические потери на переменном токе.
Разновидности:
1) Дипольная релаксационная поляризация – поворот и ориентация молекул диполей по направлению поля.
Рисунок 54.
Время установления: 10^-2…10^-10 с.
Тау – время релаксации.
2) Ионно-релаксационная поляризация – перемещение ионов от одного атома к другому в веществах с неполной упаковкой электронов. Пример: стекло.
Рисунок 55.
В жидком – проводники с электролитической проводимостью.
3) Электронно – релаксационная – переход электрона к другому атому при поляризации.
Время установления: 10^-2…10^-5 с для комнатной температуры.
4) Миграционная – наблюдается в неоднородных диэлектриках с проводящими включениями. Пример: бумага.
Рисунок 56.
Низкочастотная поляризация. Время релаксации: минуты и часы.
5) Спонтанная поляризация. Фаза – состояние кристаллической решетки, ее структура.
В различных веществах возможно изменение фазы без изменения агрегатного состояния. Изменение фазы в диэлектриках может приводить к спонтанной поляризации – сегнетоэлектрики. Диэлектрическая проницаемость – до 10^5. Вид диэлектриков – нелинейные. Используются в датчиках.
Диэлектрическая проницаемость смеси.
Рисунок 57.