Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля

Путь электрическое поле переходит из одного однородного диэлектрика в другой, который отличается только диэлектрической проницаемостью.

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Разложим вектор Е1 на две составляющие:

1) Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru - перпендикулярную границе раздела диэлектрика.

2) Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru - параллельную границе раздела диэлектрика.

Для того чтобы установить законы, согласно которым изменяются Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru и Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru при переходе воспользуемся теоремой о циркуляции вектора напряженности электрического поля и теоремой Гаусса.

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Выберем контур который охватывает малую часть границы раздела. Стороны контура, параллельные границе раздела, имеют такую длину, что поле Е в ее пределах в каждом диэлектрике можно считать одинаковым, а высота контура пренебрежимо мала. Согласно теореме о циркуляции вектора Е:

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru (1)

При переходе электрического поля из одного диэлектрика в другой тангенциальная оказывается одинаковой по обе стороны границы раздела (не претерпевает скачка).

Условия для вектора Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru .

Возьмем очень малой высоты цилиндр, расположив его на границе раздела двух диэлектриков. Сечение цилиндра должно быть таким, чтобы в пределах каждого его торца вектор D был одинаков. Тогда согласно теореме Гаусса для вектора D: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru где Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru - поверхностная плотность стороннего заряда на границе раздела. Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Из этого соотношения видно, что нормальная составляющая вектора D претерпевает скачек при переходе границы раздела. Но если сторонние заряды на границе раздела отсутствуют ( Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru ), то в этом случае нормальные составляющие вектора D скачка не испытывают, они оказываются одинаковыми по разные стороны границы раздела Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru (2). Таким образом, если на границе раздела двух однородных изотропных диэлектриков сторонних зарядов нет, то при переходе этой границы составляющие Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru и Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru изменяются непрерывно, без скачка. Составляющие же Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru и Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru претерпевают скачек.

Преломление линий Е и D.

Найдем соотношение между углами Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru и Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Если сторонних зарядов на границе раздела нет, то согласно (1) и (2) Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru Из рисунка следует, что Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru Отсюда с учетом предыдущих условий получаем закон преломления Е, а значит и D: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Это означает, что в диэлектрике с большим значением Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru линии Е и D будут составлять больший угол с нормалью к границе раздела.

Вопрос 21. Применение теоремы Гаусса для расчета электрических полей. Электрическое поле: 1) бесконечной равномерно заряженной плоскости; 2) вблизи заряженной металлической поверхности; 3) заряженного проводящего шара; 4) бесконечно равномерно заряженной нити; 5) однородно заряженного диэлектрического шара; 6) бесконечной равномерно заряженной по объему диэлектрической пластины конечной толщины.

1) Поле бесконечной равномерно заряженной плоскости. Пусть поверхностная плотность заряда Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Благодаря равномерному распределению заряда по бесконечной плоскости, поле, созданное им, обладает плоской симметрией. Это означает, что линии электрического смещения Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru направлены перпендикулярно плоскости. Кроме того, в симметричных относительно плоскости точках векторы Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru одинаковы по модулю, но противоположны по направлению. Поток сквозь боковую поверхность цилиндра равен нулю, поэтому полный поток через всю поверхность цилиндра будет равен: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru , где Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru - площадь каждого торца. Внутри цилиндра заключен заряд Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Согласно теореме Гаусса Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru откуда получаем выражение: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru , т.к. Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru то Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

3) Поле заряженного проводящего шара.

Пусть заряд равномерно распределен по шару радиуса R. Поле такой системы центрально симметричное, поэтому для нахождения поля следует в качестве замкнутой поверхности взять концентрическую сферу.

1) Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

По теореме Гаусса: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Для точек сферы S1: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

2) Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Для точек сферы S2: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Формулы можно преобразовать с помощью: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

4) Поле бесконечной равномерно заряженной нити.

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Нить тонкая и равномерно заряженная. Заряд неподвижен. Поле обладает цилиндрической симметрией. На расстоянии R модуль напряженности электрического поля постоянен. Учитывая симметрию распределения заряда, в качестве гауссовской поверхности выберем цилиндр, геометрический центр которого совпадает с нитью. Длина образующей H. Радиус основания цилиндра R. Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru - линейная плотность заряда. Согласно теореме Гаусса: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Полный поток вектора Е через цилиндр будет равен потоку через его боковую поверхность: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

5) Поле однородно заряженного диэлектрического шара.

Расчет аналогичен полю заряженного проводящего шара. Для нахождения поля внутри шара нужно применить теорему Гаусса в виде Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . И за Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru принять Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

График зависимости Е от r поля равномерно заряженного диэлектрического шара. В рассмотренном случае диэлектрическая проницаемость вещества принята равной Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru поэтому при перехода через поверхность шара напряженность скачкообразно меняется в 2 раза. Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Вопрос 22. Электрическая емкость уединенного проводника. Емкость уединенного заряженного проводящего шара.

Рассмотрим процесс зарядки удаленного от других тел проводника. Сообщим ему заряд q. В результате этого заряд проводника станет равным Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Этот заряд распределится по поверхности проводника так, чтобы напряженность поля внутри проводника стала равной нулю, а его поверхность стала эквипотенциальной. Пусть значение потенциала этой поверхности равно Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Если теперь вновь сообщить проводнику такой же заряд q, то предыдущий заряд на проводнике не будет влиять на распределение нового заряда, так как внутри проводника напряженность поля Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Следовательно новый заряд q распределится по поверхности точно так же, как и первый. В этом случае и заряд и потенциал проводника увеличится вдвое. При сообщении проводнику заряда q в n-ый раз все повторится: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Таким образом потенциал Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru уединенного проводника будет все время пропорционален находящемуся на нем заряду Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru .

Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru где С – коэффициент пропорциональности называемый электроемкостью уединенного проводника. Физический смысл: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru (1). Электроемкость уединенного проводника численно равна заряду, который нужно сообщить этому незаряженному проводнику чтобы его потенциал стал равным единице Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Единица емкости – фарад (Ф). Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Емкость уединенного проводящего шара.

Радиус шара R. Шар находится в однородном и изотропном безграничном диэлектрике с проницаемостью Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru . Сообщим шару заряд q и вычислим его потенциал Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru (2).

Из (1) и (2) следует формула емкости уединенного проводящего шара: Вопрос 20. Поле на границе раздела двух диэлектрических сред. Граничные условия для напряженности и вектора электростатической индукции электрического поля - student2.ru

Из этого выражения следует что электроемкость уединенного проводящего шара определяетя его размерами (R) и диэлектрическими свойствами среды, в которой он находится. В общем случае электроемкость уединенного проводника зависит также от его формы.

Наши рекомендации