Теплофикационные станции (ТЭЦ)
Лекция 2. ТИПЫ ЭЛЕКТРОСТАНЦИЙ И ПОДСТАНЦИЙ.
Оглавление
2.1 Тепловые конденсационные электрические станции (КЭС) 1
2.2 Теплофикационные станции (ТЭЦ) 2
2.3 Атомные электрические станции (АЭС) 3
2.4 Гидроэлектростанции. 4
2.5 Потребительские ПС.. 6
Основную часть электрической энергии вырабатывают:
1) тепловые станции (ТЭС), которые подразделяются на конденсационные(КЭС) и теплофикационные (ТЭЦ), пока незначительную часть энергии вырабатывают ТЭС с газотурбинными (ГТУ) и парогазовыми установками (ПГУ);
2) атомные электрические станции (АЭС);
3) гидравлические электрические станции (ГЭС) и их разновидность - гидроаккумулирующие станции (ГАЭС)
Ниже рассмотрены особенности основных электрических станций и их структурных схем.
Структурная схема станции представляет собой схему, на которой показываются в их связи основное электрооборудование: генераторы и силовые трансформаторы, и условно представленные распределительные устройства (РУ). Коммутационные и измерительные аппараты в РУ на этой схеме не изображаются. Эти схемы показывают пути выдачи энергии производимой станцией потребителю. Подробнее структурные схемы разных типов станций и подстанций будут рассмотрены в следующих лекциях.
Тепловые конденсационные электрические станции (КЭС)
В отечественных энергосистемах на долю тепловых конденсационных электростанций приходится приблизительно три четверти всей вырабатываемой энергии. Мощность отдельных электростанций этого типа достигла 6000 МВт и имеет тенденцию к дальнейшему увеличению до 8000 МВт. На КЭС устанавливают экономичные паротурбинные агрегаты с параметрами пара 24 МПа и 560/565 °С с промежуточным перегревом пара мощностью 300, 500, 800 и 1200 МВт, рассчитанные на работу в базисной части суточного графика нагрузки энергосистемы с продолжительностью использования установленной мощности Ту = W/Py = 5000 ч/год и более.
Тепловые станции с агрегатами столь большой мощности по техническим и экономическим соображениям выполняют из ряда автономных частей — блоков. Каждый блок состоит из парогенератора, турбины, электрического генератора и повышающего трансформатора, полная мощность которого соответствует полной мощности генератора. Поперечные связи между блоками в тепломеханической части в виде паропроводов и водопроводов отсутствуют.
Блоки связаны между собой только на сборных шинах высшего или среднего напряжения, откуда мощность станции поступает в сеть системы.
Важнейшим условием, определяющим место строительства мощной КЭС, является наличие источника водоснабжения. Коэффициент полезногодействия КЭС с учётом расхода энергии на собственные нужды не превышает 0,32 — 0,40.
Конденсационные электростанции недостаточно маневренны. Это означает, что подготовка к пуску, синхронизация и набор нагрузки блока требуют значительного времени — от 3 до 6 ч. Поэтому для турбоагрегатов КЭС предпочтительным является режим работы с достаточно равномерной нагрузкой, изменяющейся в пределах от технического минимума, определяемого видом топлива и конструкцией агрегата, до номинальной мощности.
Недостатком КЭС, как и других тепловых станций, использующих органические виды топлива (уголь, нефть, газ), является то, что они выбрасывают в атмосферу окислы серы и азота, а также углекислый газ, который накапливается в верхних слоях атмосферы и способствует парниковому эффекту.
Теплофикационные станции (ТЭЦ)
Теплоэлектроцентрали предназначены для централизованного снабжения промышленных предприятий и городов теплом и электроэнергией. Они отличаются от конденсационных электростанций использованием тепла «отработавшего» в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. При такой комбинированной выработке электрической и тепловой энергии достигается значительная экономия топлива сравнительно с раздельным энергоснабжением, т. е. выработкой электроэнергии на конденсационных электростанциях и получением тепла от местных котельных. Поэтому станции типа ТЭЦ получили широкое распространение в районах и городах с большим потреблением тепла.
Радиус действия мощных городских ТЭЦ — снабжения горячей водой для отопления — не превышает 10 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояния до 30 км. Пар для производственных процессов при давлении 0,8 — 1,6 МПа может быть передан не далее чем на 2 — 3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300 — 500 МВт. Лишь в самых больших городах (Москве, Петербурге) с большой плотностью нагрузки целесообразны ТЭЦ мощностью до 1000-1500 МВт.
Близкое расположение ТЭЦ к потребителю позволяет передавать электроэнергию в местную нагрузку на гененераторном напряжении. По этой причине на ТЭЦ могут создаваться генераторные распределительные устройства (ГРУ) напряжением 6 – 10 кВ, к которым и подключают турбогенераторы.
Режим ТЭЦ — суточный и сезонный — определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. В периоды, когда потребление тепла относительно мало, например, летом, а также зимой при температуре воздуха выше расчётной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.
Максимальная выработка электроэнергии теплофикационными станциями «на тепловом потреблении» возможна только при совместной работе с мощными КЭС и ГЭС, принимающими на себя значительную часть нагрузки в часы снижения потребления тепла. В отечественных энергосистемах на долю ТЭЦ приходится около 40% всей вырабатываемой энергии. Приблизительно половина этой энергии вырабатывается «на тепловом потреблении» и половина — с пропуском пара в ступени низкого давления и конденсаторы.
Большинство ТЭЦ используют природный газ, транспортируемый по газопроводам.