Pumped-storage hydroelectricity
A pumped-storage hydroelectric power plant is a net consumer of energy but can be used to smooth peaks and troughs in overall electricity demand. Pumped storage plants typically use "spare" electricity during off peak periods to pump water from a lower reservoir or dam to an upper reservoir. Because the electricity is consumed "off peak" it is typically cheaper than power at peak times. This is because the "base load" power stations, which are typically coal fired, cannot be switched on and off quickly so remain in service even when demand is low.
During hours of peak demand, when the electricity price is high, the water pumped to the high reservoir is allowed to flow back to the lower reservoir through a water turbine connected to an electricity generator. Unlike coal power stations, which can take more than 12 hours to start up from cold, the hydroelectric plant can be brought into service in a few minutes, ideal to meet a peak load demand. Two substantial pumped storage schemes are in South Africa, one to the East of Cape Town (Palmiet) and one in the Drakensberg, Natal
Solar power
Solar energy can be turned into electricity either directly in solar cells, or in a concentrating solar power plant by focusing the light to run a heat engine.
A solar photovoltaic power plant converts sunlight into direct current electricity using the photoelectric effect. Inverters change the direct current into alternating current for connection to the electrical grid. This type of plant does not use rotating machines for energy conversion.
Solar thermal power plants are another type of solar power plant. They use either parabolic troughs or heliostats to direct sunlight onto a pipe containing a heat transfer fluid, such as oil. The heated oil is then used to boil water into steam, which turns a turbine that drives an electrical generator. The central tower type of solar thermal power plant uses hundreds or thousands of mirrors, depending on size, to direct sunlight onto a receiver on top of a tower. Again, the heat is used to produce steam to turn turbines that drive electrical generators.
Wind power
Wind turbines can be used to generate electricity in areas with strong, steady winds, sometimes offshore. Many different designs have been used in the past, but almost all modern turbines being produced today use a three-bladed, upwind design. Grid-connected wind turbines now being built are much larger than the units installed during the 1970s. They thus produce power more cheaply and reliably than earlier models. With larger turbines (on the order of one megawatt), the blades move more slowly than older, smaller, units, which makes them less visually distracting and safer for airborne animals.
Marine energy
Marine energy or marine power (also sometimes referred to as ocean energy or ocean power) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world’s oceans creates a vast store of kinetic energy, or energy in motion. This energy can be harnessed to generate electricity to power homes, transport and industries.
The term marine energy encompasses both wave power − power from surface waves, and tidal power − obtained from the kinetic energy of large bodies of moving water. Offshore wind power is not a form of marine energy, as wind power is derived from the wind, even if the wind turbines are placed over water.
The oceans have a tremendous amount of energy and are close to many if not most concentrated populations. Ocean energy has the potential of providing a substantial amount of new renewable energy around the world.
Osmotic power
Salinity gradient energy is called pressure-retarded osmosis. In this method, seawater is pumped into a pressure chamber that is at a pressure lower than the difference between the pressures of saline water and fresh water. Freshwater is also pumped into the pressure chamber through a membrane, which increases both the volume and pressure of the chamber. As the pressure differences are compensated, a turbine is spun creating energy. This method is being specifically studied by the Norwegian utility Statkraft, which has calculated that up to 25 TWh/yr would be available from this process in Norway. Statkraft has built the world's first prototype osmotic power plant on the Oslo fiord which was opened on November 24, 2009.
Biomass power
Biomass energy can be produced from combustion of waste green material to heat water into steam and drive a steam turbine. Bioenergy can also be processed through a range of temperatures and pressures in gasification, pyrolysis or torrefaction reactions. Depending on the desired end product, these reactions create more energy-dense products (syngas, wood pellets, biocoal) that can then be fed into an accompanying engine to produce electricity at a much lower emission rate when compared with open burning.
Grammar in Use