Методы и средства теплового неразрушающего контроля.
Вибротепловизионные метод: Вибротепловизионный метод особенно перспективен для анализа изделий, работающих в условиях вибрации. В материалах с дефектами структуры под воздействием вибрации возникают температурные поля, что обусловлено рассеянием энергии колебаний на дефектах и превращением ее в теплоту за счет внутреннего перегрева в материале. В областях нарушения гомогенности структуры возникают локальные зоны перегрева объекта. На термограммах вибрирующих пластин и других объектов четко выявляются дефекты типа расслоений, несплошноностей и т.п.
Метод тепловой томографии
Тепловая томография - метод визуализации внутренних сечений объекта с помощью тепловых эффектов. Его можно реализовать импульсным облучением объекта плоским равномерным пучком излучения и последовательной регистрацией " тепловых отпечатков "дефектов или неоднородностей теплофизических параметров контролируемой структуры на противоположной стороне изделия с помощью быстродействующего тепловизора.
Методы теплового контроля на основе термофотоупругости
В современной технологии, особенно лазерной, широко применяются высокопрозрачные оптические кристаллы, например в качестве линз для фокусировки форсированного излучения, резонаторов мощных лазеров, защитных иллюминаторов, материалов для вытяжки ИК световодов и т.п. Важнейшей характеристикой подобных материалов является абсолютное значение натурального показателя поглощения оптического излучения , который , в свою очередь, определяет долю энергии, поглощенную в материале при прохождении через него мощного потока излучения. Эта характеристика позволяет прогнозировать лучевую прочность материалов, динамику их разогрева в процессе облучения, потери в линиях световодной связи и т.п.
Вихретокотепловой метод
Вихретокотепловой метод основан на радиоимпульсном возбуждении металлических объектов полем индуктора, приеме теплового отклика приповерхностным преобразователем вовремя и после теплового воздействия и анализе амплитудно-временной информации. Ход теплового процесса определяется теплофизическими и одновременно электромагнитными параметрами объекта, что позволяет в одном эксперименте проводить исследования как тепловыми, так и вихретоковыми методами. В частности, коэффициент температуропроводности чувствителен к химическому составу, тепловому старению, термообработке, размерам зерна сплавов. С помощью метода ВТТ возможна так же тепловая толщинометрия ферромагнитных и тонкостенных изделий, изделий с грубой поверхностью и др.
Теплографический ТНК композитов
Контроль тонкостенных оболочек из полимерных композиционных материалов, прочность которых существенно зависит от дефектов типа воздушных расслоений, "слипнутых" отслоений и т.д., эффективен с помощью комбинированного теплоголографического метода. Он заключается в нагреве(тепловом нагружении) изделия и совместной регистрации термограмм и голографических интерферограмм нагретой поверхности. При этом обнаружение дефектов производится по наличию аномалий интерференционных полос, а их протяженность и глубина залегания на основании анализа термограмм контролируемой зоны изделия при его нагреве галогенными лампами.
Приборы применяемые при активном методе ТНК:
- Измерители теплопроводности
- Тепловизор
- Контактный термометр
Приборы теплового неразрушающего контроля, применяемые при пассивном методе:
- Тепловизор
- Пирометр
- Инфракрасный термометр
- Измерители тепловых потоков
- Логгеры данных температуры
Радиоволновые методы
Основаны на регистрации изменения параметров электромагнитных колебаний, взаимодействующих с контролируемым объектом. Их применяют для контроля качества и геометрических размеров изделий из диэлектрических материалов (стеклопластики и пластмассы, резина, термозащитные и теплоизоляционные материалы, фибра), вибраций, толщины металлического листа и т. п. В качестве источников энергии служат магнетроны, клистроны, лампы обратной волны, преобразователи частоты, твердотельные генераторы, диоды Ганна и т. п.
Эти методы еще не нашли должного применения в промышленности, хотя и являются весьма перспективными. Так, с их помощью можно обнаруживать непроклеи, расслоения (площадью от 10 мм2 и более), воздушные включения, трещины (от 10 мкм и более), неоднородности по плотности, напряжения, измерять геометрические размеры и т. п.