Электротехника с основами электроники

ЭЛЕКТРОТЕХНИКА С ОСНОВАМИ ЭЛЕКТРОНИКИ

Опорный конспект лекций

Для учащихся машиностроительного отделения по специальности

Металлорежущие станки и инструменты»

БРЕСТ 2008

Выполнил: Литовчик Е.Б., преподаватель машиностроительного отделения Брестского государственного политехнического колледжа.

Опорный конспект лекций рассмотрен и одобрен на заседании цикловой комиссии машиностроительного отделения

Протокол № _____от «___»____________2008 г.

Председатель_______________ /Василевская Е.А./

Содержание:

1. Общие сведения..........................................................................................  
2. Электронные приборы………………......................................................  
3. Электронно-оптические приборы…….………………...........................  
4. Электронные усилители и генераторы……………………………........  
5. Логические элементы и цифровые устройства…….…………….........  
6. Источники питания электронных устройств...........................................  
7. Литература……………………………………………………………….  

Общие сведения

Возникновение электроники было подготовлено всем ходом развития промышленного производства и в частности электротехники. В цепи замеча­тельных открытий и изобретений в этой области следует особо выделить такие достижения, как открытие явления термоэлектронной эмиссии
(1887 г.), создание электровакуумного диода английским ученым Я. Флемингом (1904 г.) и триода Ли де Форестом в США в 1907 г. Эти изобретения позволили генерировать и усиливать электромагнитные колебания. Электроника – важ­нейшая отрасль науки и техники, изучающая физические процессы, происхо­дящие в электровакуумных и полупроводниковых приборах при взаимодейст­вии заряженных частиц и электрических полей, а также занимающаяся разра­боткой и созданием электронных приборов и устройств для измерения, кон­троля, обработки и хранения информации.

Особо следует отметить открытие в 1889 г. русским физиком А.С. Попо­вым возможности использования электромагнитных волн для передачи сигна­лов на большие расстояния и создание им в 1895 г. первого в мире радиопри­емника.

В 1907 г. русский физик Б.Л. Розинг сформулировал основные принципы телевидения.

Огромный скачок в развитии электроники произошел после открытия в 1922 г. О.В. Лосевым явления проводимости в полупроводниках и разработки группой физиков под руководством академика А. Ф. Иоффе теории полупро­водников и их технического применения. После этого использование полупро­водниковых приборов в различных областях электроники, радиотехники, вы­числительной техники приобрело массовый характер.

Современный этап развития электроники и электронной техники харак­теризуется использованием новых материалов и технологий, все более сложных и надежных электронных устройств. В связи с этим наибольшее развитие полу­чила интегральная электроника. Первые интегральные микросхемы были соз­даны в США в 1958 г. Д. Килби и Р. Нойсом.

Создание микросхем позволило существенно снизить размеры и энерго­потребление устройств, повысить их надежность и быстродействие.

Исследование высоких технологий в современном производстве способ­ствовало повышению плотности размещения элементов микросхемы в кри­сталле, что привело к появлению микропроцессоров – основных элементов современных электронно-вычислительных машин.

Современные электронные приборы и устройства широко применяют в различных областях производства при автоматизации технологических процес­сов, в компьютеризации производственных процессов. В связи с этим изучение электроники будущими специалистами производства, независимо от области их деятельности, позволит существенно повысить их профессиональный уровень.

ЭЛЕКТРОННЫЕ ПРИБОРЫ

Электровакуумные приборы

Принцип работы электровакуумных приборов основан на явлении тер­моэлектронной эмиссии. Электровакуумные приборы условно можно разде­лить на электронно-управляемые, газоразрядные и электронно-оптические [1].

В электронно-управляемых приборах – лампах – проводимость обуслов­лена только свободными электронами, возникающими за счет эмиссии. Лампа представляет собой стеклянный или металлический баллон, в котором созда­ется вакуум. В баллон помещают положительный электрод (катод) и отрица­тельный электрод (анод). Кроме того, в лампе могут быть один или несколько управляющих электродов (сеток). Катод нагревают до температуры, при кото­рой свободные электроны покидают металл катода и перемещаются в вакууме к аноду. Число электронов, следовательно, и ток, проходящий через прибор, можно регулировать, изменяя электрический потенциал на управляющих элек­тродах.

Электронные лампы используются в электронных приборах для выпрям­ления переменного тока, усиления сигналов и т.д.

В газоразрядных приборах проводимость обеспечивается в основном на­личием в баллоне какого-либо инертного газа. При воздействии на прибор раз­личных внешних факторов – электромагнитного поля, температуры, светового потока – газ ионизируется (появляются, кроме электронов, положительно и отрицательно заряженные ионы) и в газовой среде возникает электрический разряд. Газоразрядные лампы используют в качестве различных электронных индикаторов и указателей.

Полупроводниковые приборы

Полупроводниковые диоды

В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация. В цепи, таким образом, протекает ток (рис. 12.4 а).

Если изменить направление тока на обратное (рис.12.4 б), то изменится и направление движения дырок и электронов. Носители зарядов при этом не приближаются к граничной поверхности полупроводников, а удаляются от нее.

электротехника с основами электроники - student2.ru

а) б)

Рис. 12.4

В результате в пограничной области образуется слой, лишенный свободных носителей зарядов. Постоянный ток через этот слой проходить не может. В реальных условиях очень малый ток проходит через этот слой вследствие наличия в полупроводнике, наряду с примесной, некоторой собственной электропроводности. Однако сопротивление цепи в этом случае (рис. 12.4 б) во много раз больше, чем в предыдущем случае (рис. 12.4 а).

Электронно-дырочный, или p-n, переход представляет собой электрический переход между p и n зонами полупроводника. Электронный прибор с таким переходом называется полупроводниковым диодом. Он обладает односторонней проводимостью. Все полупроводниковые диоды по конструктивному исполнению делят на точечные и плоскостные. Точечный диод состоит из пластины германия или кремния с электропроводностью n-типа и вплавленной в нее стальной проволочкой (рис. 12.5 а). У точечного диоды линейные размеры p-n - перехода много меньше его толщины. Из-за малой площади контакта пря-

электротехника с основами электроники - student2.ru

а) б)

Рис. 12.5

мой ток таких диодов, а также их межэлектродная емкость сравнительно малы, поэтому их используют в основном для выпрямления тока в слаботочных устройствах сверхвысокой частоты. Вольт–амперные характеристики точечных диодов приведены на рис. 12.5 б.

В плоскостных диодах p-n - переход образован двумя полупроводниками с различными токами электропроводности, причем линейные размеры перехода много больше его толщины. Площадь перехода колеблется в широких пределах: от долей мкм2 до нескольких см2, поэтому прямой ток плоскостных диодов составляет от единиц до тысяч ампер. Конструкция и вольт-амперные характеристики плоскостных диодов показаны на рис. 12.6 а, б.

электротехника с основами электроники - student2.ru

а) б)

Рис.12.6

Основными параметрами диодов являются: прямой максимальный ток диода электротехника с основами электроники - student2.ru , прямое напряжение электротехника с основами электроники - student2.ru , максимально допустимое обратное напряжение электротехника с основами электроники - student2.ru , обратный ток диода электротехника с основами электроники - student2.ru .

Стабилитроны

электротехника с основами электроники - student2.ru Стабилитрон представляет собой специальный полупроводниковый диод, напряжение электрического пробоя которого очень слабо зависит от протекающего через него тока. Стабилитрон служит для стабилизации напряжения в различных электронных устройствах (например, блоках питания). Вольт-амперная характеристика стабилитрона приведена на рис. 12.7.

Рис. 12.7

Из характеристики видно, что напряжение стабилизации электротехника с основами электроники - student2.ru слабо изменяется при достаточно больших изменениях тока стабилизации электротехника с основами электроники - student2.ru . Это свойство стабилитрона используют для получения стабильного напряжения в стабилизаторах напряжения.

Одним из основных параметров, учитываемых при выборе стабилитронов, является напряжение стабилизации (пробоя). В справочных данных указывается номинальное напряжение стабилизации для определенного тока. В настоящее время отечественной промышленностью серийно выпускаются стабилитроны с напряжением стабилизации в диапазоне 5…300 В и с допусками на разброс номинального напряжения 5, 10, 15 %. Наличие разброса ограничивает применение некоторых схем включения стабилитронов и приводит иногда к усложнению схем.

Напряжение стабилизации зависит также от температуры стабилитрона. Количественно эта зависимость выражается температурным коэффициентом напряжения электротехника с основами электроники - student2.ru , представляющим собой отношение изменения напряжения стабилизации к изменению температуры стабилитрона, приведенное к одному вольту, %/°C

электротехника с основами электроники - student2.ru , (12.1)

где электротехника с основами электроники - student2.ru и электротехника с основами электроники - student2.ru – напряжения стабилизации при температурах электротехника с основами электроники - student2.ru и электротехника с основами электроники - student2.ru .

Дополнительными характеристиками стабилитрона являются динамическое сопротивление на участке стабилизации электротехника с основами электроники - student2.ru , минимальный электротехника с основами электроники - student2.ru и максимальный электротехника с основами электроники - student2.ru ток стабилизации.

Параметры схем со стабилитронами выбираются так, чтобы длительный средний ток через них был меньше максимально допустимого электротехника с основами электроники - student2.ru Значение тока электротехника с основами электроники - student2.ru ограничено допустимой по тепловому режиму мощностью рассеяния и представляет собой отношение этой мощности к напряжению стабилизации. Кратковременно же стабилитрон способен выдерживать токи, значительно большие электротехника с основами электроники - student2.ru Значение температурного коэффициента возрастает с увеличением напряжения стабилизации. Поэтому в ряде случаев целесообразно заменить один высоковольтный стабилитрон цепочкой низковольтных, соединенных последовательно.

Конструктивно стабилитроны выполняются аналогично выпрямительным диодам.

Тиристоры

Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей электротехника с основами электроники - student2.ru (рис. 12.8) с тремя электродами: анодом А, катодом К и управляющим электродом УЭ, отходящими от слоев p1, n2 и n1 соответственно (тиристор с N-управля-ющим электродом). Полупроводниковым материалом для изготовления тиристоров является кремний.

Напряжение электротехника с основами электроники - student2.ru питания тиристора является обратным напряжением для электронно-дырочного перехода П2. Соответственно ток электротехника с основами электроники - student2.ru (при электротехника с основами электроники - student2.ru = 0) тиристора, представляющий собой обратный ток перехода П2, является прямым током для переходов П1 и П3. Тиристор имеет релейную проходную характеристику (рис. 12.9).

Напряжение питания подается на тиристор таким образом, что переходы П1 и П3 открыты, а П2 закрыт. Вследствие этого ток через тиристор не протекает. Если повышать напряжение электротехника с основами электроники - student2.ru , то ток тиристора будет незначительно увеличиваться, пока не достигнет определенного значения.

  электротехника с основами электроники - student2.ru электротехника с основами электроники - student2.ru
Рис. 12.8 Рис. 12.9

Происходит лавинообразный пробой внутреннего перехода, ток через тиристор резко возрастает, и тиристор открывается.

электротехника с основами электроники - student2.ru Напряжение включения электротехника с основами электроники - student2.ru может быть снижено, если в слой электротехника с основами электроники - student2.ru ввести дополнительные носители заряда от независимого источника энергии. В зависимости от тока управления можно получить семейство характеристик тиристора (рис. 12.9). Важными параметрами при выборе тиристора являются ток управления электротехника с основами электроники - student2.ru и максимальное обратное напряжение электротехника с основами электроники - student2.ru

Рис. 12.10

Тиристоры маркируют буквами и цифрами, например, КУ202Н, 2У202Н, где К- или 2 – кремниевые; У-тиристоры; 202Н – обозначение параметров прибора (мощность, частота, напряжение, ток).

Иногда изготовляют тиристоры с симметричной ВАХ. Это достигается встречным соединением двух одинаковых четырехслойных структур или специальных пятислойных структур с четырьмя p-n-переходами. На рис. 12.10 показана структура симметричного тиристора (симистора), предназначенного для работы в цепях переменного тока. Симистор состоит из пяти слоев чередующихся электронной и дырочной проводимостей. Металлические слои М ( электротехника с основами электроники - student2.ru ) обеспечивают выключение одного из р-n переходов (П3 или П4) в зависимости от направления ЭДС электротехника с основами электроники - student2.ru ( электротехника с основами электроники - student2.ru ) источника питания. Поэтому при каждом из направлений основного (прямого) тока электротехника с основами электроники - student2.ru ( электротехника с основами электроники - student2.ru ) функционируют три перехода, как у обычного тиристора.

Возможность работы симистора в цепи переменного тока и управления переменным током является важной для практики его применения. Симистор может управляться и постоянным током.

Биполярные транзисторы

Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов. По принципам действия их делят на управляемые электрическим током (биполярные) и управляемые электрическим полем (полевые).

электротехника с основами электроники - student2.ru Рис. 12.13

Биполярный транзистор представляет собой совокупность двух электронно-дырочных переходов с общей n-областью (или р-областью), взаимодействующих между собой так, что обратный ток одного из р-n – переходов является функцией прямого тока второго перехода (рис. 12.13).

В основе указанного взаимодействия лежит явление инжекции – ввода неосновных носителей тока в общую область, например дырок в
р-области в общую n-область.

Ввод дырок одной из р-областей в общую n-область происходит в несимметричном p-n – переходе при прохождении через него прямого тока электротехника с основами электроники - student2.ru . Таким образом, действие биполярного транзистора основано на процессе управления концентрациями неосновных носителей тока.

Если, например, к левому р-n – переходу подключить источник напряжения электротехника с основами электроники - student2.ru , то через первый переход пойдет прямой ток электротехника с основами электроники - student2.ru , который в
р-области левого перехода будет практически дырочным током электротехника с основами электроники - student2.ru . Поток дырок, создающих электротехника с основами электроники - student2.ru , вводится (инжектируется) в n-область. Часть инжектированных дырок рекомбенирует в n-области с электронами, поступающими от источника электротехника с основами электроники - student2.ru Однако, большинство дырок, которые в n-области являются неосновными носителями, захватывается электрическим полем правого перехода, создавая ток электротехника с основами электроники - student2.ru . Поэтому через правый р-n – переход проходит в обратном направлении ток

электротехника с основами электроники - student2.ru , (12.3)

где электротехника с основами электроники - student2.ru – ток, обусловленный собственными носителями; электротехника с основами электроники - student2.ru – ток, обусловленный инжектированными носителями.

Таким образом, левый р-n – переход с прямым током поставляет в
n-область неосновные носители тока – эмиттирует и поэтому называется эмиттерным. Он является управляющим переходом. Правый p-n – переход собирает поставленные в n-область неосновные носители тока и называется коллекторным. Общая n-область называется базой. Отходящие от соответствующих областей металлические выводы (электроды) называются эмиттером Э, коллектором К и базой Б биполярного транзистора (рис. 12.14), а токи, проходящие по ним – токами эмиттера электротехника с основами электроники - student2.ru , коллектора электротехника с основами электроники - student2.ru и базы электротехника с основами электроники - student2.ru . База, как указывалось, может иметь электронную и дырочную проводимость. Соответственно различаются биполярные транзисторы типа p-n-p и n-p-n.

электротехника с основами электроники - student2.ru Рис. 12.14

Биполярный транзистор выполняется из кристалла германия или кремния, в котором путем вплавления, диффузии (или другим технологическим способом) примесей, например, индия, формируются два электронно-дырочных перехода (рис. 12.14).

Различают входные и выходные вольт-амперные характеристики биполярного транзистора. Входная, или базовая, характеристика – это зависимость между током и напряжением на входе транзистора электротехника с основами электроники - student2.ru (рис. 12.15 а).

Известны три схемы включения транзисторов:

1) с общей базой (рис. 12.16 а) – используют в устройствах для усиления напряжения и мощности;

2) с общим эмиттером (рис. 12.16 б) – применяют для усиления мощности;

3) с общим коллектором (рис. 12.16 в) – схема обладает большим выходным сопротивлением, и ее используют в так называемых эмиттерных повторителях для повышения входного сопротивления электронного устройства.

электротехника с основами электроники - student2.ru

а) б)

Рис. 12.15

электротехника с основами электроники - student2.ru

а) б) в)

Рис.12.16

Биполярные транзисторы обозначают буквами ГТ (германиевые) и КТ (кремниевые) с цифрами, характеризующими параметры транзистора. Основные электрические параметры транзистора следующие: электротехника с основами электроники - student2.ru , электротехника с основами электроники - student2.ru – ток базы и ток коллектора соответственно, электротехника с основами электроники - student2.ru – напряжение между базой и эмиттером, электротехника с основами электроники - student2.ru – напряжение между коллектором и эмиттером. Кроме этих параметров для расчета и анализа устройств с биполярными транзисторами используются так называемые h-параметры: электротехника с основами электроники - student2.ru – входное сопротивление транзистора, электротехника с основами электроники - student2.ru – коэффициент обратной связи по напряжению, электротехника с основами электроники - student2.ru – коэффициент передачи по току (характеризует усилительные свойства транзистора), электротехника с основами электроники - student2.ru – характеризует выходную проводимость.

Полевые транзисторы

Полевые транзисторы разделяют на униполярные (с одним p-n - переходом) и полевые с изолированным затвором (без p-n - перехода) или со структурой МДП (металл – диэлектрик – полупроводник). Действие полевых транзисторов основано на процессах управления основными носителями тока электрическим полем, перпендикулярным направлению их движения в полупроводнике. По способам управления указанные разновидности полевых транзисторов существенно различаются.

Униполярный транзистор представляет собой полупроводник с электронно-дырочным переходом, управляемым обратным напряжением. Конструкция и условные обозначения транзистора показаны на рис. 12.17.

электротехника с основами электроники - student2.ru

а) б) в)

Рис. 12.17

Вывод З базы (в данном случае р-типа переход) принято называть затвором полевого транзистора. Вывод И от канала, из которого при электронном канале (n-типа) ток выходит, называется истоком. Второй вывод С называется стоком. Токи, проходящие по ним, называются токами истока электротехника с основами электроники - student2.ru и стока электротехника с основами электроники - student2.ru .

Униполярный транзистор выполняется из кристалла кремния или германия, например р-типа (подложка), в котором создаются две области n-типа: исток И и сток С – и р-n переход, область n которого является каналом.

электротехника с основами электроники - student2.ru Транзистор с изолированным затвором (металл М), (рис. 12.18) представляет собой полупроводник П с токопроводящим слоем у поверхности соприкосновения с диэлектриком Д, концентрация носителей тока в котором изменяется в функции напряженности электрического поля, перпендикулярного направлению тока. Токопроводящий канал формируется (индуцируется) из неосновных носителей полупроводника, например из электронов n полупроводника с дырочной р электропроводностью (подложки) и электрическим полем, обусловленным напряжением электротехника с основами электроники - student2.ru .

В канале электроны являются основными носителями тока. Токопроводящий канал имеет противоположную подложке электропроводность и называется инверсионным слоем полупроводника. Инверсионный слой образуется у поверхности соприкосновения полупроводника с диэлектриком, поскольку электрическое поле сосредоточено практически только в диэлектрике (непроводящем слое). На границе их раздела происходит разрыв вектора напряженности поля, что в соответствии с электромагнитной теорией означает наличие поверхностного заряда.

Концентрация носителей тока в канале определяется количеством перемещенных электрическим полем из объема полупроводника электронов и, следовательно зависит от напряжения электротехника с основами электроники - student2.ru на затворе. Изменяется, в данном случае увеличивается, при возрастании напряжения электротехника с основами электроники - student2.ru и ток стока Iс, пропорциональный концентрации основных (для канала) носителей. В рассмотренном МДП-транзисторе с индуцированным каналом происходит обогащение канала носителями тока при положительном (канал n-типа) или при отрицательном (р-типа) напряжении электротехника с основами электроники - student2.ru . Как и униполярный, МДП-транзистор с индуцированным каналом может управляться напряжением одного знака. Однако образование инверсионного слоя возможно и при отсутствии напряжения на затворе. Поэтому существуют МДП-транзисторы со встроенным каналом. Их особенностью является возможность работы как с обогащением, так и с объединением канала, то есть возможность управления напряжением с изменяющейся полярностью. Истоком МДП-транзистора с каналом n-типа является область полупроводника, подключенная к отрицательному зажиму источника электротехника с основами электроники - student2.ru , а каналом р-типа – к положительному.

Транзистор со структурой МДП выполняется обычно на полупроводниковом кристалле П, кремния с дырочной проводимостью, в котором создают две области n-типа – исток И и сток С (рис. 12.19 а). Поверхность кристалла между истоком и стоком покрывают диэлектриком Д – двуокисью кремния, на котором располагается металлический слой М затвора З. Условные графические обозначения транзисторов с изолированным затвором и каналами n- и p-типов приведены на рис.12.19 б, в.

электротехника с основами электроники - student2.ru

а) б) в)

Рис.12.19

Полевые транзисторы, особенно с изолированным затвором, имеют очень большое входное сопротивление и практически не требуют мощности для управления ими. Для действия полевых транзисторов используются основные носители заряда полупроводника. Поскольку концентрация неосновных носителей является функцией внутренней энергии твердого тела (тепловой и др. видов), а концентрация основных носителей практически не зависит от нее, то полевые транзисторы менее подвержены воздействию температуры, радиационного излучения и других факторов, изменяющих внутреннюю энергию твердого тела.

Важная особенность полевых транзисторов состоит в возможности их работы при переменном напряжении UСИ, поскольку при симметричной конструкции исток и сток транзистора одинаковы, т. е. их можно использовать в цепях переменного тока как управляемые резисторы.

Интегральные микросхемы

Постоянное усложнение схем электронных устройств привело к существенному увеличению количества входящих в них элементов. В связи с этим возникает проблема все большей миниатюризации электронных приборов. Это стало возможным только на базе современного научно-технического направления электроники – микроэлектроники, основным принципом которой является объединение в одном сложном микроэлементе многих простейших – диодов, транзисторов, резисторов, конденсаторов и др. Эти достаточно сложные элементы обладают высокой надежностью и быстродействием, энергии потребляют мало, а стоят недорого. Такие сложные микроэлементы называют интегральными микросхемами (или просто микросхемами). Внешний вид одной из таких микросхем показан на рис. 12.20.

  электротехника с основами электроники - student2.ru Рис. 12.20 электротехника с основами электроники - student2.ru Рис. 12.21

В зависимости от технологии изготовления микросхемы разделяют на гибридные и полупроводниковые. Гибридная микросхема представляет собой диэлектрическое основание (стекло, керамика), на которое в виде различных пленок наносят пассивные элементы – резисторы, конденсаторы, соединительные проводники. Для этого используют напыления из золота, серебра, меди.

Активные элементы – бескорпусные полупроводниковые приборы – навешивают на диэлектрик. Все это объединяют в одном корпусе с выводами (рис. 12.21). Плотность расположения элементов в гибридной микросхеме может достигать 500 шт./см2.

Основным достоинством гибридных микросхем является высокая точность параметров элементов, входящих в микросхему, например, резисторы, выполненные из пленочного тантала имеют точность не хуже электротехника с основами электроники - student2.ru 0,5 %.

Полупроводниковые микросхемы изготовляют из единого кристалла полупроводника (рис. 12.22), отдельные области которого представляют собой различные активные и пассивные элементы.

электротехника с основами электроники - student2.ru Рис. 12.22

Элементы полупроводников микросхем получают в едином технологическом процессе. Резисторы, например, получают посредством легирования полупроводника. Сопротивление резистора зависит от размеров данной области полупроводника и его удельного сопротивления. Высокоомные резисторы получают посредством создания эмиттерных повторителей в кристалле.

Диоды и транзисторы получают путем избирательного травления исходного кристалла на нанесенной ранее маске и создания изоляционного слоя окиси кремния. Затем напыляют или наращивают слой поликристаллического кремния и после повторного травления в определенные области кристалла с помощью диффузии вводят акцепторные и донорные примеси, то есть получают участки с электропроводностью р- и n-типа. Для соединения отдельных элементов микросхемы между собой используют золотые и алюминиевые пленки, которые наносят с помощью напыления. Все элементы помещают в металлический или пластмассовый корпус и соединяют с выводами с помощью золотой или алюминиевой проволоки диаметром до 10 мкм.

Интегральные микросхемы в зависимости от назначения подразделяют на линейно-импульсные и логические и могут иметь в отличие от обычных электронных приборов несколько входных и выходных параметров, которые строго нормируются. Микросхемы представляют собой целые функциональные узлы электронных устройств, например, генераторы, усилители, счетчики импульсов и др.

Контрольные вопросы:

1. Чем отличается полупроводник от металла и диэлектрика?

2. Какие типы носителей тока существуют в полупроводниках?

3. Что такое легирование проводника?

4. Какие два типа примесей используются для легирования?

5. Что определяет тип проводимости ( электротехника с основами электроники - student2.ru или электротехника с основами электроники - student2.ru ) легированного полупроводника?

6. Что такое электротехника с основами электроники - student2.ru переход и каково его основное свойство?

7. Нарисуйте вольт-амперную характеристику электротехника с основами электроники - student2.ru перехода?

8. Каково прямое падение напряжения для германиевых и для кремниевых диодов?

9. Что такое напряжение пробоя?

10. Нарисуйте схематическое обозначение диода и обозначьте выводы.

11. Какие методы изготовления электротехника с основами электроники - student2.ru переходов вы знаете?

12. Каковы особенности работы стабилитрона?

13. Как стабилитрон включается в цепь?

14. Нарисуйте схему регулирующей цепи со стабилитроном и опишите ее работу.

15. Опишите структуру тиристора.

16. Нарисуйте вольт-амперную характеристику неуправляемого тиристора и опишите его работу.

17. Нарисуйте семейство вольт-амперных характеристик управляемого тиристора.

18. Опишите структуру симистора.

19. Для чего используются тиристоры?

20. Как устроен транзистор?

21. Какие два типа биполярных транзисторов существуют?

22. Как называются электроды биполярного транзистора?

23. Нарисуйте схематические обозначения электротехника с основами электроники - student2.ru и электротехника с основами электроники - student2.ru транзисторов.

24. Как правильно подать напряжение смещения на электротехника с основами электроники - student2.ru и электротехника с основами электроники - student2.ru транзисторы?

25. Для чего используются транзисторы?

26. Чем конструкция полевого транзистора с электротехника с основами электроники - student2.ru переходом отличается от конструкции биполярного транзистора?

27. Нарисуйте схематические обозначения полевых транзисторов с электротехника с основами электроники - student2.ru переходом с электротехника с основами электроники - student2.ru каналом и с электротехника с основами электроники - student2.ru каналом и обозначьте их выводы.

28. Нарисуйте схемы подачи смещения на полевые транзисторы с электротехника с основами электроники - student2.ru переходом с электротехника с основами электроники - student2.ru каналом и с электротехника с основами электроники - student2.ru каналом.

29. Чем отличается конструкция МОП (металл-окисел-полупроводник) транзистора от конструкции полевого транзистора с электротехника с основами электроники - student2.ru переходом?

30. Опишите, как происходит управление током в полевом МОП транзисторе.

31. Нарисуйте схематические обозначения МОП транзисторов обеденного типа с электротехника с основами электроники - student2.ru каналом и с электротехника с основами электроники - student2.ru каналом и обозначьте их выводы.

32. Чем МОП транзисторы объединенного и обогащенного типа отличаются друг от друга?

33. Нарисуйте схематические обозначения МОП транзисторов обогащенного типа с электротехника с основами электроники - student2.ru каналом и с электротехника с основами электроники - student2.ru каналом и обозначьте их выводы.

34. Перечислите правила, которые должны соблюдаться при работе с незащищенными МОП транзисторами.

35. Что такое интегральная микросхема?

36. Какие компоненты могут быть включены в интегральные микросхемы?

37. Какие методы используются для изготовления интегральных микросхем?

38. Какие материалы используются для корпусов интегральных микросхем?

Индикаторные приборы

Индикаторные приборы служат для преобразования электрических сигналов в визуально воспринимаемую информацию. В зависимости от назначения индикаторные приборы могут иметь разную степень сложности и базироваться на различных физических принципах. В настоящее время для отображения знаковой информации наибольшее распространение получили электронно-лучевые, вакуумно-люминесцентные, газоразрядные, полупроводниковые и жидкокристаллические индикаторы.

Газоразрядные индикаторы

Газоразрядный индикатор относится к ионным приборам тлеющего разряда и выполняется с холодным катодом. Индикатор имеет два или более электродов, помещенных в стеклянный баллон, заполненный инертным газом при давлении 0,1...103 Па (рис. 13.3).

электротехника с основами электроники - student2.ru Рис. 13.3

При напряжении между электродами (анодом и катодом), достаточном для лавинообразной ионизации инертного газа движущимися в электрическом поле электронами и выбивания вторичных электронов с катода ускоренными электрическим полем положительными ионами, в пространстве между анодом и катодом возникает тлеющий разряд. Одновременно идет процесс рекомбинации электронов и положительно заряженных ионов. При этом выделяется энергия в виде фотонов, т.е. газ светится. Цвет свечения определяется составом газа-наполнителя.

Ионизация и рекомбинация наиболее интенсивно происходят вблизи катода, где концентрации свободных электронов и ионов максимальны. Поэтому наиболее интенсивное свечение наблюдается в прикатодной области.

электротехника с основами электроники - student2.ru Рис. 13.4

Простейшие приборы этого типа – сигнальные индикаторы (неоновые лампы). Они представляют собой два металлических электрода, выполненные в виде дисков, стержней или коаксиальных цилиндров и помещенные в стеклянный баллон, заполненный неоном. Устройство сигнального индикатора показано на рис. 13.4.

Пространство этих ламп вблизи катода светится оранжево-красным светом, наблюдаемым обычно через торец лампы. Для ограничения тока в неоновых лампах последовательно с ними необходимо включать балластный резистор, который может находиться в цоколе лампы.

Напряжение питания сигнальных индикаторов колеблется от 60 до 235 В, рабочий ток – от 0,15 до 30 мА. Неоновые лампы широко используют как сигнальные в устройствах автоматики, вычислительной техники и в приборостроении. Особенно часто их применяют в качестве индикаторов напряжения питания.

Знаковые газоразрядные индикаторы – это многокатодные приборы тлеющего разряда, предназначенные для индикации знаков-цифр, букв или математических символов. Катоды могут быть выполнены как в виде соответствующих знаков, так и в виде отдельных элементов этих знаков – сегментов. В первом случае катоды располагаются друг за другом, представляя собой пакет тонких проволочных знаков, а анодом является сетка, не мешающая восприятию знаков (рис. 13.5). Во втором случае изображение буквы, цифры или символа

Наши рекомендации