Жёсткие шины, КЭТ. Конструкции и выбор
Электрические машины и аппараты соединяют между собой при помощи шин ¾ неизолированных проводников (из алюминия, меди или реже стали), укрепленных на изоляторах, или при помощи кабелей ¾ изолированных проводников (из алюминия или меди). Неизолированные проводники обладают большей нагрузочной способностью, проще в монтаже и эксплуатации, надежнее и экономичнее, поэтому их широко применяют в РУ всех напряжений в качестве сборных шин, служащих для приема и распределения электроэнергии, соединения аппаратов и присоединения генераторов, синхронных компенсаторов, трансформаторов и др.
В установках генераторного напряжения применяют жесткие алюминиевые шины прямоугольного сечения при токах до 4000 А (рис. 3.4, а¾в) или при больших токах фасонного сечения: коробчатого (рис. 3.4, г) и трубчатого.
Рис. 3.4.. Конструкция жестких шин.
а ¾ однополосные; б ¾ двухполосные; в ¾ трёхполосные; г ¾ коробчатые; д ¾ комплектный экранированный токопровод; 1 ¾ экран; 2 ¾ токоведущая шина; 3 ¾ изолятор
Для соединения мощных генераторов с повышающими трансформаторами на блочных станциях широко применяют пофазно экранированные токопроводы, каждая фаза которых состоит из трубчатой шины, прикрепленной изоляторами к алюминиевому экрану-кожуху (рис.3. 4, д). Эти токопроводы изготовляют на заводах и комплектно поставляют на место установки, что сокращает время монтажа и удешевляет конструкцию. Выпускают так же комплектно и трехфазные токопроводы генераторного напряжения для линий собственных нужд тепловых электростанций.
В установках 35 кВ и выше при выполнении шинных конструкций учитывают возможность появления короны ¾ интенсивной ионизации воздуха вокруг провода, сопровождающейся образованием озона и окислов азота, разрушающих металлы и изоляцию. Корона приводит к большой потере активной мощности. Для снижения напряженности электрического поля и предотвращения появления короны шины выполняют круглой, трубчатой формы или проводник каждой фазы выполняют из нескольких параллельных проводников, сечения которых располагают по окружности.
Жесткие шины окрашивают эмалевыми красками: желтой фазу А; зеленой фазу В; красной фазу С. Окраска не только помогает распознать фазу установки, но усиливает теплоотдачу и увеличивает нагрузочную способность шин. Гибкие шины (провода) не окрашивают, а на фазных проводах, например, подвешивают кружки, окрашенные в соответствующие цвета.
Как сказано выше, в закрытых РУ 6—10 кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за высокой их стоимости не применяются даже при больших токовых нагрузках. При токах до 3000 А применяются одно- и двухполюсные шины. При больших токах рекомендуются шины коробчатого сечения, так как они обеспечивают меньшие потери от эффекта близости и поверхностного эффекта, а также лучшие условияохлаждения. Например, при токе 2650 А необходимы алюминиевые шины трехполосные размером 60 х 10 мм или коробчатые 2 х 695 мм с допустимым током 2670 А.В первом случае общее сечение шин составляет 1800 мм2, во втором 1390 мм2 . Как видно, допустимая плотность тока в коробчатых шинах значительно больше (1,92 вместо 1,47 А / мм2).
Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6—10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины Концы шин на изоляторе имеют скользящее крепление через овальные продольные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилие, возникающее при температурных удлинениях шин, не передавалось на аппарат. Соединение шин по длине обычно осуществляется сваркой.
Присоединение алюминиевых шин к медным (латунным) зажимам аппаратов производится с помощью переходных зажимов, предотвращающих образование электролитической пары медь-алюминий.
Для лучшей теплоотдачи и удобства эксплуатации шины окрашивают при переменном токе фаза А в желтый, фаза В — зеленый и фаза С — красный цвет; при постоянном токе положительная шина в красный, отрицательная — синий цвет.
Согласно §1.3.28 ПУЭ сборные шины электроустановок и ошиновка в пределах открытых и закрытых РУ всех напряжений по экономической плотности тока не проверяются.
Выбор сечения шин производится по нагреву (по допустимому току). При этом учитываются не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможность неравномерного распределения токов между секциями шин. Условие выбора
,
где Iдоп— допустимый ток на шины выбранного сечения с учетом поправки при расположении шин плашмя или температуре воздуха, отличной от принятой в таблицах (Jо,ном = 25°С). В последнем случае
Для неизолированных проводов и окрашенных шин принято Jдоп = 70°С; Jо,доп = 25°С тогда
где Iдоп,ном — допустимый ток по таблицам при температуре воздуха J0, ном = 25°С; J0 — действительная температура воздуха; Jдоп — допустимая температура нагрева продолжительного режима (по § 1.3.22 ПУЭ для шин принято +70°С).
Проверка шин на термическую стойкость при КЗпроизводится по условию
Jк ≤ Jк, доп или qmin ≤ q,
где Jк — температура шин при нагреве током КЗ; Jк,доп — допустимая температура нагрева шин при КЗ; qmin—минимальное сечение по термической стойкости; q — выбранное сечение.
Проверка шин на электродинамическую стойкость.
Жесткие шины, укрепленные на изоляторах, представляют собой динамическую колебательную систему, находящуюся под воздействием электродинамических сил. В такой системе возникают колебания, частота которых зависит от массы и жесткости конструкций. Электродинамические силы, возникающие при КЗ, имеют составляющие, которые изменяются с частотой 50 и 100 Гц.
Электродинамическая стойкость шин обеспечивается при выполнении условия
sдоп ≥ sрасч
Для многополосных шин
sрасч = sф + sn МПа,
Сила взаимодействия между полосами
,
Напряжение в материале полос
,
Напряжение в материале шин от взаимодействия фаз