Тема 5. Выборочное наблюдение
Выборочное наблюдение проводится в тех случаях, когда проведение сплошного наблюдения невозможно или экономически нецелесообразно. Например, проверка качества отдельных видов продукции может быть связана с ее уничтожением, а некоторые совокупности настолько велики, что физически не возможно собрать данные в отношении каждого из их членов. Также выборочное наблюдение используют для проверки результатов сплошного наблюдения.
Выборочной совокупностью называют ту часть единиц, которые отобраны для наблюдения а генеральной - всю совокупность единиц, из которых производится отбор
Качество результатов выборочного наблюдения зависит от того, насколько состав выборки представляет генеральную совокупность, т.е., насколько выборка репрезентативна. Для обеспечения репрезентативности выборки необходимо соблюдение принципа случайности отбора единиц.
Методы отбора единиц в выборочную совокупность подразделяют на повторный и бесповторный
При повторном отборе каждая попавшая в выборку единица возвращается в генеральную совокупность и имеет шанс вторично попасть в выборку. При этом вероятность попадания в выборочную совокупность для всех единиц генеральной совокупности остается одинаковой.
Бесповторный отбор означает, что каждая отобранная единица не возвращается в генеральную совокупность и не может подвергнуться вторичной регистрации, а поэтому для остальных единиц вероятность попадания в выборку увеличивается.
Бесповторный отбор дает более точные результаты по сравнению с повторным, т.к. при одном и том же объеме выборки наблюдение охватывает больше единиц генеральной совокупности.
При формировании выборочной совокупности используют следующие виды (способы) отбора: простой случайный отбор; механический отбор; серийная, расслоенная (типическая или стратифицированная), многоступенчатая, многофазовая и моментная выборки.
Случайный отбор производится с помощью жеребьевки либо по таблице случайных чисел. В первом, случае всем элементам генеральной совокупности присваивается порядковый номер и на каждый элемент заводится жребий в виде пронумерованных шаров или карточек-фишек, которые перемешиваются и помещаются в ящик. Затем производится отбор «наудачу». Во втором случае из специальных таблиц производится выбор случайных чисел, которые образуют порядковые номера для отбора. Например, имеется ряд чисел: 60280, 88925. 99610. Применение комбинации этих чисел зависит от размера совокупности: если в ней 1000 единиц, то порядковый номер каждой единицы должен состоять из трех цифр от 000 до 999. В этом случае приведенный ряд чисел даст пять первых номеров единиц выборочной совокупности: 602,808, 892, 599, 610. Остальные номера получают аналогично до тех пор, пока не будет получен заданный объем выборочной совокупности.
При механическом способе отбирается каждый элемент гене-
ральной совокупности. Например, если имеется совокупность из 100 тыс. единиц и требуется выборка в 1000 единиц, то в нее попадет каждый сотый элемент. Если единицы совокупности не ранжированы относительно изучаемого признака, то 1 -й элемент выбирается наугад, произвольно, а если ранжированы - то из середины 1-й сотни.
При серийном способе в порядке случайной или механической выборки отбирают не единицы, а определенные районы, серии (гнезда), внутри которых проводится сплошное наблюдение.
Расслоенным (стратифицированным) способом производится отбор единиц из неоднородной совокупности. Для этого генеральную совокупность с помощью типологической группировки разбивают на однородные группы, а затем из каждой группы случайным или механическим способом отбирают единицы в выборочную совокупность. При этом единицы разных групп включаются в выборку пропорционально их численности в генеральной совокупности.
Формулы для вычислений
Показатель | Формула |
общее число единиц единицы, обладающие каким-либо признаком доля единиц, обладающих этим признаком доля единиц, не обладающих этим признаком средняя величина признака дисперсия признака повторный отбор: средняя ошибка доли средняя ошибка признака предельная ошибка доли предельная ошибка признака бесповторный отбор: средняя ошибка доли средняя ошибка признака предельная ошибка доли предельная ошибка признака перенос выборочных характеристик на генеральную совокупность численность выборки повторный отбор бесповторный отбор | N; n ; m ; (1-р); ; ; ; ; ; ; ; ; ; ; ; ; ; |
Тема 6. Ряды динамики
Рядом динамики в статистике называется ряд чисел, характеризующих изменение величины социально-экономических явлений во времени. Каждый ряд динамики состоит из двух элементов:
1) ряд уровней изучаемого явления (у);
2) ряд периодов времени, к которому относятся уровни ряда (t).
Классификация рядов динамики
1. В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин.
2. В зависимости от того, как выражают уровни ряда состояние явления на определенные моменты времени, различают моментные и интервальные ряды динамики.
3. В зависимости от расстояний между уровнями ряды динамики подразделяются на ряды с равностоящими и неравностоящими уровнями ряда во времени.
Формулы для вычислений
Показатель | Формула |
Абсолютный прирост Темп роста Темп прироста Абсолютное содержание 1% прироста Средний уровень ряда Средний абсолютный прирост Средний темп роста Средний темп прироста | ; ; ; ; ; ; ; ; |