Типы систем массового обслуживания

№ п/п Параметры СМО Тип СМО
n m
Одноканальная, без очереди
n > 1 Многоканальная, без очереди
1 < m <∞ Одноканальная, с ограниченной очередью
n > 1 1 < m <∞ Многоканальная, с ограниченной очередью
m = ∞ Одноканальная, с неограниченной очередью
n > 1 m = ∞ Многоканальная, с неограниченной очередью

По числу обслуживающих каналов различают одноканальные и многоканальные СМО.

Находящиеся в СМО заявки могут либо ожидать обслуживания, либо находиться под обслуживанием. Часть заявок, ожидающих обслуживания, образует очередь.

В зависимости от целочисленного значения m используются следующие названия в классификации типов СМО:

1) m = 0 – без очереди;

2) m > 0 – с очередью.

Если число мест в очереди m является конечным, то в СМО могут происходить отказы в предоставлении обслуживания некоторым заявкам. В связи с этим СМО указанного типа называются системами с отказами. Отклоняются от обслуживания те заявки, в момент прихода которых все места в очереди случайно оказались занятыми, или, если m = 0, все каналы оказались занятыми. Считается, что заявка, получившая отказ в обслуживании, навсегда теряется для СМО. Таким образом, пропускная способность СМО этого типа всегда меньше 100 %.

Если m не ограничено, что иногда условно записывают как m = Типы систем массового обслуживания - student2.ru , то соответствующая СМО называется системой с ожиданием. В СМО данного типа пришедшая заявка при отсутствии возможности немедленного обслуживания ожидает обслуживания, какой бы длинной ни были очередь и продолжительность времени ожидания.

4.2. Примеры решения задач систем массового обслуживания

Требуется решить задачи 1–3. Исходные данные приведены в табл. 4.2–4.4.

Некоторые обозначения, применяемые в теории массового обслуживания, для формул:

n – число каналов в СМО;

λ – интенсивность входящего потока заявок Пвх;

v – интенсивность выходящего потока заявок Пвых;

μ – интенсивность потока обслуживания Поб;

ρ – показатель нагрузки системы (трафик);

m – максимальное число мест в очереди, ограничивающее длину очереди заявок;

i – число источников заявок;

pк – вероятность k-го состояния системы;

pо – вероятность простаивания всей системы, т. е. вероятность того, что все каналы свободны;

pсист – вероятность принятия заявки в систему;

pотк – вероятность отказа заявке в принятии ее в систему;

роб – вероятность того, что заявка будет обслужена;

А – абсолютная пропускная способность системы;

Q – относительная пропускная способность системы;

Типы систем массового обслуживания - student2.ru оч – среднее число заявок в очереди;

Типы систем массового обслуживания - student2.ru об – среднее число заявок под обслуживанием;

Типы систем массового обслуживания - student2.ru сист – среднее число заявок в системе;

Типы систем массового обслуживания - student2.ru оч – среднее время ожидания заявки в очереди;

Типы систем массового обслуживания - student2.ru об – среднее время обслуживания заявки, относящееся только к обслуженным заявкам;

Типы систем массового обслуживания - student2.ru сис – среднее время пребывания заявки в системе;

Типы систем массового обслуживания - student2.ru ож – среднее время, ограничивающее ожидание заявки в очереди;

Типы систем массового обслуживания - student2.ru – среднее число занятых каналов.

Абсолютная пропускная способность СМО А – среднее число заявок, которое может обслужить система за единицу времени.

Относительная пропускная способность СМО Q – отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок.

При решении задач массового обслуживания необходимо придерживаться нижеприведенной последовательности:

1) определение типа СМО по табл. 4.1;

2) выбор формул в соответствии с типом СМО;

3) решение задачи;

4) формулирование выводов по задаче.

Вариант выбирается следующим образом: две последние цифры зачетной книжки студента делятся с остатком на количество вариантов, представленных в таблицах. К остатку от деления прибавляется единица. Полученное число явится номером варианта для информации соответствующего вида.

Задача 1. На сортировочную станцию прибывают составы с интенсивностью 0,9 состава в час. Среднее время обслуживания одного состава 0,7 часа. Определить показатели эффективности работы сортировочной станции: интенсивность потока обслуживаний, среднее число заявок в очереди, интенсивность нагрузки канала (трафик), вероятность, что канал свободен, вероятность, что канал занят, среднее число заявок в системе, среднее время пребывания заявки в очереди, среднее время пребывания заявки в системе (табл. 4.2).

Таблица 4.2

Наши рекомендации