Формулы для установившегося режима

1. Вероятность простоя каналов, когда нет заявок (k=0):

P0=1 : {Σ ρк/к!+ρn+1/n!(n-ρ)[1-(ρ/n)m]}

n – число каналов;

m – длина накопителя;

ρ – интенсивность нагрузки;

К – число заявок, поступивших на обслуживание за промежуток времени t.

2. Вероятность отказа в обслуживании: Pотк= ρn+m/n!n m*P0

3. Вероятность обслуживания: Робс= 1- Pотк

4. Абсолютная пропускная способность: A=λ Робс

5. Среднее число занятых каналов: _

n3=A/μ= λ Робс/μ=ρ Робс, где ρ=λ/ μ

6. Среднее число заявок в очереди:

_

Lоч= ρn+1/n*n! * 1-(ρ/n)m(m+1-mρ/n) / (1-ρ/n)2 * P0

7. Среднее время ожидания обслуживания: _ _

tоч= Lоч

_ _ _

8. Среднее число заявок в системе: z= Lоч+ n3

_

9. Среднее время пребывания в системе: tсмо= z/λ

8.5 Примеры решения задач.

Пример № 1.

Дежурный администратор города имеет 5 телефонов. Звонки поступают с интенсивностью 90 звонков/час. Средняя продолжительность разговора составляет 2 мин.

Определить характеристики дежурного администратора как системы массового обслуживания.

Решение:

1. Классифицировать СМО:

· с отказами (нет накопителя);

· многоканальная (5 телефонов = 5 каналов).

2. Обозначения:

λ – интенсивность потока заявок (λ=90зв/60мин=3зв/2мин)

n – число каналов (n=5);

μ – интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени (μ=1/ tобс)

tобс – среднее время обслуживания (tобс=2мин)

ρ – интенсивность нагрузки;

k – номер заявки (число заявок), k=n=5;

Р0 – вероятность простоя каналов обслуживания, когда нет заявок;

Ротк – вероятность отказа в обслуживании, когда поступившая на обслуживание заявка найдет все каналы занятыми;

Робс – вероятность обслуживания.

nз = ρ* Робс - среднее число занятых обслуживанием каналов.

кз = nз / n - для каналов, занятых обслуживанием.

А = λ Робс - абсолютная пропускная способность СМО.

3. Определяем характеристики данной СМО:

а) ρ = λ/μ = λ/(1/tобс) = λ tобс = 3/2 * 2 = 3

n

б) Ро= 1/ (Σρк/к!) = 1/ (ρ0/0!)+(ρ1/1!)+(ρ2/2!)+(ρ3/3!)+(ρ4/4!)+(ρ5/5!)=

к=0

=1/ (1+3/1)+(3*3/1*2)+(3*3*3/1*2*3)+(3*3*3*3/1*2*3*4)+

+(3*3*3*3*3/1*2*3*4*5)=1/ 1+3+(9/2)+(27/6)+(81/24)+(243/120)=0,054

в) Ротк= ρn/ n!* Ро= (35/ 1*2*3*4*5)*0,054=(3*3*3*3*3/1*2*3*4*5)*0,054=

= (243/120)*0,054=0,12

г) Робс = 1- Ротк= 1-0,12=0,88

д) nз = ρ*Робс= 3*0,88=2,6

е) кз = nз / n = 2,6/5=0,52

ж) А = λ Робс = (3/2)*0,88 = 1,31.

Пример № 2.

На автомобильной стоянке возле магазина имеется 2 места. Рядом находится площадка на 2 а/м. На стоянку прибывает 1 машина в 3 мин. Среднее время нахождения водителя в магазине 2 мин.

Определить характеристики этой СМО.

Решение:

1) Классифицируем СМО:

- с ограниченной длиной очереди

- с накопителем

- многоканальная

- с ограничением общего времени пребывания заявки в системе СМО с ожиданием и с ограниченной длиной очереди.

2) Обозначения:

m=2 - длина накопителя

n=2 - число каналов

Остальные обозначения - как в Примере № 1.

3) Определяем характеристики данной СМО:

а) λ = 1/3;

б) tобс = 2 мин;

в) ρ = λ/μ = λ/(1/tобс) = λ tобс = (1/3)*2=2/3.

г) Вероятность простоя каналов:

n

Ро= 1/(Σρк/n!)+ρn+1/n!(n-ρ)*[1-(ρ/n)m]=1/ ((ρ0/0!)+(ρ1/1!)+(ρ2/2!)+

к=0

+(ρ2+1/1*2(2-ρ))*[1-(ρ/2)2]=1/ ( (2/3)/0! )+2/3+( (2/3)2/(1*2) )+

+( (2/3)3/ 2(2-2/3) ) [1- ( (2/3)/2 )]= 1/ 1+2/3+2/9+1/9[1-1/9]=0,52

д) Вероятность отказа в обслуживании:

Ротк= ρn+m/ n!nmо= ( (2/3)4/1*2*22 )*0,52=(16/81)/8*0,52=0,013

е) Вероятность обслуживания:

Робс = 1- Ротк= 0,987

ж) Абсолютная пропускная способность:

А = λ Робс= 0,987*1/3=0,33

з) Среднее число занятых каналов:

nз = ρ*Робс= 2/3*0,987=0,658

Для каналов, занятых обслуживанием:

кз =0,658/2=0,329.

и) Среднее число заявок в очереди:

_

Lor= ρn+1/n*n! * ( 1-(ρ/n)m(m+1-mρ/n) )/(1-ρ/n)2 * Ро

_

Lor =((2/3)3/(2*2) )* 1-( (2/3)/2)2 )*( 2+1-2*((2/3)/2) )/ (1-(2/3)/2)2)*0.52

=(8/27)/4* * (1-1/9*7/3) /(4/9)= 2/27*((20/27)/(4/9))*0.52=2/27*5/3*0.52=0.14

к) Среднее время ожидания обслуживания:

_

tor= Lor/ λ= 0.14/0.33=0.42

л) Среднее число заявок в системе:

_

Z= Lor+ nз =0,14+0,66=0,8

м) Среднее время пребывания в системе:

tсмо= Z/ λ = 0,8/0,33=2,42 или tсмо= tor+ toбс= 0,42+2=2,42 мин

Контрольные вопросы:

1. Что понимается под системами массового обслуживания (СМО) и для чего они предназначены?

2. Какие блоки включает схема СМО?

3. Что понимается под характеристикой эффективности работы СМО?

4. На какие классы делятся СМО в зависимости от :

а) характера потоков,

б) числа каналов,

в) дисциплины обслуживания,

г) ограничения потока заявок,

д) количества этапов обслуживания?

5. Что понимается под «потоком обслуживания заявок»?

6. Что представляет собой интенсивность входящего потока и какова единица измерения этого показателя?

7. Перечислите основные характеристики эффективности функционирования многоканальной СМО с отказами ?

8. Перечислите основные характеристики эффективности функционирования многоканальной СМО с ожиданием и ограничением на длину очереди?

9. Перечислите основные характеристики эффективности функционирования многоканальной СМО с неограниченным ожиданием?

Лекция . Сетевое планирование.

Основные понятия метода сетевого планирования

При сетевом планировании определяются оценки продолжительности операций, и строится сетевая модель – сетевой график.

Построение сетевого графика позволяет проанализировать все операции и внести улучшения в структуру модели до начала ее реализации.

Календарный сетевой график определяет начало и окончание каждой операции, а также взаимосвязи с другими операциями графика. Он выявляет критические операции, которым надо уделять особое внимание, чтобы закончить все работы в директивный срок.

По выявленным некритическим операциям календарный сетевой график позволяет определить резервы времени, которые можно выгодно использовать при задержке выполнения работ или эффективном использовании трудовых и финансовых ресурсов.

Сетевой график (сетевая модель) – графическое изображение

плана выполнения комплекса работ, состоящего из нитей

(работ) и узлов (событий), которые отражают логическую

взаимосвязь всех операций.

В основе сетевого планирования лежит изображение планируемого комплекса работ в виде графа.

Граф – схема состоящая из заданных точек (вершин), соединенных системой линий.

Ориентированным называется такой граф, на котором стрелкой указаны направления всех его ребер (дуг), что позволяет определить какая из двух его граничных вершин является начальной, а какая конечной.

Сетевой график – это ориентированный граф без контуров (в

контуре начальная вершина совпадает с

конечной).

Основными элементами сетевых графиков являются:

Работа, события, путь.

РАБОТА – это активный процесс, требующий затрат ресурсов, либо

пассивный (ожидание), приводящий к достижению

намеченного результата.

ФИКТИВНАЯ РАБОТА – это связь между результатами работ

(событиями), не требующая затрат времени и ресурсов,

т.е. имеющая нулевую продолжительность.

СОБЫТИЕ – это результат выполнения одной или нескольких

предшествующих работ.

ПУТЬ – любая непрерывная последовательность (цепь) работ и

событий.

КРИТИЧЕСКИЙ ПУТЬ – это путь не имеющий резервов работы

комплекса.

Работы расположенные на критическом пути,

называют критическими.

Все остальные работы являются некритическими (ненапряженными) и обладают резервами времени, которые позволяют передвигать сроки их

выполнения, не влияя на общую продолжительность выполнения всего комплекса работ.

ОЖИДАНИЕ – процесс, требующий затрат времени, но не

требующий затрат ресурсов (отдых персонала, ожидание

благоприятных условий и т.п.).

Общий вид сетевого графика показан на рисунке:

Формулы для установившегося режима - student2.ru

Рис. 1 Сетевой график (вариант).

Все работы изображаются на сетевом графике стрелками, величина которых не зависит от продолжительности работы и расхода ресурсов.

Стрелки указывают факт и направление движения процесса.

Фиктивная работа изображается пунктирной стрелкой.

У всех стрелок проставляются индексы, соответствующие наименованию работы, а под ними- время, затрачиваемое на данную работу.

Понятие СОБЫТИЕ отличается от понятия РАБОТЫ тем, что не является процессом и не связано с затратами времени и ресурсов (разработка сметы закончена, ресурс принят, сборка узла машины завершена). Оно может иметь следующие значения:

1. Исходное событие, с которого начинаются все работы. В исходное событие не входит ни одна работа (например, получено распоряжение о начале производства продукта).

2. Завершающее событие – событие, которым заканчивается весь комплекс работ и из него не выходит ни одной работы.

3. Промежуточные события, или просто события – все события, находящиеся между исходным и завершающим событием.

Наши рекомендации