Постановка задач принятия оптимальных решений
В общем случае задача принятия решения представима кортежем следующего вида:
Dec=áD, I, M, Eñ, с учетом
где D – множество альтернатив, мощность множества альтернатив; I –информация в объеме, необходимом для принятия решений, ; M – метод поиска решения, ; E – множество критериев оценки альтернатив, мощность множества критериев оценки альтернатив, ξ – множество вариантов среды решения задачи (детерминированная, вероятностная, нечеткая и др.).
Центральное место в системном анализе и принятии решений занимает построение модели управляемой системы и последующий ее анализ. Понятие модели системы играет важную роль в проведении системных исследований любой направленности.
Модель – это искусственно создаваемый образ конкретного процесса или явления, в конечном счете, любой системы.
Понятие модели связано с наличием какого-либо сходства между выбранными объектами, один из которых является оригиналом, а другой - его образом, выполняющим роль модели. Модели являются всегда упрощенным описанием системы.
Модель системы – это отображение реальной системы (оригинала), имеющее определенное объективное соответствие ей и позволяющее прогнозировать и исследовать ее функциональные характеристики, т.е. характеристики, определяющие взаимодействие системы с внешней средой.
При составлении модели отражают отдельные стороны функционирования системы, т.е. то специфичное, что направлено на решение поставленной целевой установки общей задачи системного анализа. Сходство двух объектов с точки зрения выполнения каких-либо функций, целей или задач позволяет утверждать, что между ними существует отношение оригинала и модели. В задачах системного исследования первоочередной интерес представляет сходство поведения модели и объекта, выраженное на каком-либо формальном языке и изучаемое путем преобразований соответствующих формул или высказываний. Так приходим к понятию математической модели, являющейся основой аналитических исследований и имитационных экспериментов на ЭВМ.
В настоящее время существует такое большое количество моделей систем, сто возникла необходимость их классификации. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем [1, 3].
В зависимости от характера изучаемых процессов в системе все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные [1] Детерминированное моделированиеотображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделированиеотображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики, т. е. набор однородных реализаций. Статическое моделированиеслужит для описания поведения объекта в какой-либо момент времени, а динамическое моделированиеотражает поведение объекта во времени. Дискретное моделированиеслужит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделированиеиспользуется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.
В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.
Мысленное моделированиечасто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.
При наглядном моделированиина базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетического моделированияисследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.
Аналоговое моделированиеосновывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.
Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.
В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус - словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий. На основе тезауруса разрабатывается онтология предметной области, которая является явным описанием основных понятий объектов предметной области и отношений между ними.
Рис. 1.1. Классификация видов моделирования систем
Символическое моделированиепредставляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.
Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая модель.
Под математическим моделированиембудем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая модель, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.
Для аналитического моделированияхарактерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т. п.) или логических условий. Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;
б) численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).
Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.
В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.
В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.
При имитационном моделированииреализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.
Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования [4, 11, 31, 37, 46].
Комбинированное (аналитико-имитационное) моделированиепри анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.
При реальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т. д.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т. е. предприятием, что в большинстве случаев невозможно.
Естественно, что для различных классов задач требуются разные виды моделей. Применение ЭВМ как инструмента решения сложных задач позволило перейти от построения теоретических моделей систем к их практическому применению.
Лекция 2. Темы лекции
2.1.Основные процедуры системного анализа
2.2.Структура оптимизационных задач. Математическое программирование. 2.3. Линейное программирование. Содержательные постановки задач линейного программирования.