Транспортная задача открытого типа
Если для транспортной задачи выполняется одно из условий
или
,
то модель задачи называют открытой. Чтобы такая задача имела решение, необходимо ее привести к закрытому типу, т.е. чтобы выполнялось равенство .
Это делают так: если , то добавляют фиктивного потребителя со спросом (в распределительной таблице появится дополнительный столбец), если , то добавляют фиктивного поставщика с предложением (в распределительной таблице появится дополнительная строка). В обоих случаях тарифы полагают равными нулю. Далее задача решается по такому же порядку, как было рассмотрено ранее.
Запишем алгоритм решения транспортной задачи:
1) Проверка типа модели ТЗ.
2) Построение начального опорного плана (любым способом).
3) Проверка плана на вырожденность.
4) Проверка плана на оптимальность методом потенциалов:
а) нахождение потенциалов из системы
(для всех заполненных клеток);
б)проверка второго условия оптимальности
(для всех пустых клеток).
5) Переход к нехудшему опорному плану (если это необходимо).
Пример. На складах имеются запасы однотипного товара в количестве а (35; 40; 40; 50), который необходимо доставить потребителям. Потребности потребителей задает вектор b (31; 52;17; 20). Матрица затрат на доставку единицы товара от i-го поставщика j-му потребителю:
с=
Составить план перевозок с минимальными транспортными затратами.
Решение. Определим тип модели транспортной задачи. Суммарная мощность поставщиков: 35+40+40+50=165 (единиц товара); Суммарный спрос потребителей: 31+52+17+20=120 (единиц товара).
Т.к. , то имеем модель открытого типа.
Введем фиктивного потребителя, спрос которого равен
165 –120 =45 (единиц товара).
Тарифы 0. Т.о. получаем модель закрытого типа, m = 4 – число поставщиков, n = 5 – число потребителей. Ранг матрицы задачи . Построим начальный опорный план методом минимального элемента (наименьшей стоимости).
– 4 | Таб.1 |
Число заполненных клеток распределительной таблицы 8 равно рангу матрицы задачи r = 8, следовательно, опорный план является невырожденным.
Транспортные затраты, соответствующие опорному плану:
(ден. ед.).
Исследуем опорный план на оптимальность, используя метод потенциалов.
Дополним таблицу 1 столбцом и строкой потенциалов и . Систему потенциалов найдем, используя первое условие оптимальности: для заполненных поставками клеток .
;
;
;
;
;
;
;
;
.
Из записанной системы находим: , , , , , , , , .
Проверим выполнение второго условия оптимальности. Для всех пустых клеток должно выполняться неравенство: .
(1;1) 0 + 1 – 5 = –4 0;
(1;2) 0 + 2 – 4 = –2 0;
(1;5) 0 – 4 – 0 = –4 0;
(2;3) 1 + 3 – 5 = –1 0;
(2;4) 1 + 1 – 8 = –6 0;
(2;5) 1 – 4 – 0 = –4 0;
(3;1) 4 + 1 – 6 = –1 0;
(3;2) 4 + 2 – 8 = –2 0;
(3;3) 4 + 3 – 7 = 0 0;
(3;4) 4 + 1 – 10 = –5 0;
(4;1) 4 + 1 – 5 = 0 0;
(4;4) 4 + 1 – 2 = 3 0.
Т.к. среди свободных клеток есть такие, в которых второе условие оптимальности не выполняется, то план не оптимален.
Осуществим переход к нехудшему опорному плану. Наиболее перспективная для заполнения клетка (4;4), т.к. ей соответствует наибольшая положительная оценка
4 + 1 – 2 = 3.
Найдем цикл перераспределения груза для этой клетки.
Выбранной для заполнения клетке присваиваем знак «+», далее знаки чередуем. Среди вершин со знаком «–» выбираем наименьшую поставку.
– объем перепоставки.
Перераспределим поставки по циклу, тем самым перейдем к новому опорному плану.
–2 | |||||||||||
–1 | Таб.2 |
Транспортные затраты, соответствующие опорному плану:
(ден. ед.).
Исследуем опорный план на оптимальность. Найдем значения потенциалов, используя первое условие оптимальности. Для заполненных поставками клеток .
, , , , , , , , .
Проверим выполнение второго условия оптимальности. Для всех пустых клеток должно выполняться неравенство: .
Выпишем клетки, в которых условие нарушено:
(1;2) 0 + 5 – 4 = 1 0.
Осуществим переход к нехудшему опорному плану. Наиболее перспективная для заполнения клетка (1;2), т.к. ей соответствует положительная оценка 1. Найдем цикл перераспределения груза для этой клетки.
– объем перепоставки.
Число заполненных клеток распределительной таблицы 8 равно рангу матрицы задачи r = 8, следовательно, опорный план (таб. 3) является невырожденным.
–1 | |||||||||||
–2 | Таб.3 |
Транспортные затраты, соответствующие опорному плану:
(ден. ед.).
Исследуем опорный план на оптимальность.
Найдем значения потенциалов, используя первое условие оптимальности. Для заполненных поставками клеток .
, , , , , , , , .
Проверим выполнение второго условия оптимальности. Для всех пустых клеток должно выполняться неравенство: .
Второе условие оптимальности выполняется для всех свободных клеток, следовательно план оптимален.
Наименьшие транспортные затраты .
Ответ: ; оптимальный план распределения поставок расположен в таб.3.
Задания для самостоятельной работы.
Составить план перевозок с минимальными транспортными затратами.
а) | б) |