Оптимальные параметры для стратегии

ПЛАНИРОВАНИЯ НЕ ПОКРЫВАЕМОГО ДЕФИЦИТА

Избавляясь от q, S и t1 в выражении для F (с учетом указанных выше равенств), после несложных преобразований (они опускаются из-за ограниченности объема работы) интересующая нас целевая функция F = F(Т,γ) как функция переменных Т и γ приводится к виду

F(Т, γ) = (1-g)×D × (РП – С) – С0 × оптимальные параметры для стратегии - student2.ruоптимальные параметры для стратегии - student2.ru ∙Т× (1 –γ)2оптимальные параметры для стратегии - student2.ru ×Т∙γ2

– (CП + PП)×D ∙Т× (1 – γ)2× оптимальные параметры для стратегии - student2.ru

(*)

Обратим внимание на следующий граничный случай (вырожденный случай для стратегии управления, когда γ=1 и соответственно товар не поставляется). При γ → 1 значение F(Т, γ) в предельном случае будет отрицательным при любом Т>0 (если, по крайней мере, учитываются накладные расходы C0>0 и тем более, если учитываются издержки дефицита Сg>0). Поэтому в указанном граничном случае, если для параметра γ анализируется это граничное значение, то наилучшим решением будет:

q в случае C0>0 и Сg=0 (штрафные санкции дефицита отсутствуют) - Т→ ∞,

т.е. товар не поставляется (при этом интенсивность потока доходов будет нулевой, а не отрицательной);

q в случае C0>0 и Сg>0 (штрафные санкции дефицита имеются) -

Т = оптимальные параметры для стратегии - student2.ru ,

причем в этом случае оптимизируются именно процедуры выплаты издержек дефицита, а C0 представляет соответствующие накладные расходы таких процедур, т.к. товар не поставляется (γ=1), причем интенсивность потока доходов будет, естественно, отрицательной.

Возвратимся к решению задачи оптимизации функции F = F(Т, γ), представленной выражением (*). Далее, меняя знак целевой функции на противоположный и умножая при этом для удобства записи на 2/D, перепишем задачу оптимизации в виде

f(Т,g) ® min,

где функция f(Т,g) определяется равенством

f(Т,g) = 2C0 /Т×D + Т×(1 – γ)2 ∙[Ch + d(CПП)] +

+ Т×γ2∙Сg – 2(1-g)×(РП – СОП) .

Разумеется, при этом (из-за указанного выше «перехода» к противоположному знаку целевой функции) f(Т,g) уже характеризует соответствующие потери в интенсивности потока доходов при конкретном выборе интервала повторного заказа и параметра g, характеризующего «баланс» для промежутков времени дефицита и наличия запасов на таком интервале

Замечание. Легко видеть, что при Т→0 имеем f(Т,g)→∞ при любом оптимальные параметры для стратегии - student2.ru . Кроме того, если Т→∞, то также f(Т,g)→∞ (кроме отмеченного выше граничного случая g=1, причем применительно к вырожденной ситуации, когда Cg = 0). Следовательно, при любом оптимальные параметры для стратегии - student2.ru интересующий нас минимум f(Т,g) как функции переменной Т существует. Кроме того, при любом фиксированном значении Т > 0 функция f(Т,g) (как функция переменной g) представляет собой параболу, причем “ветвями вверх”. Следовательно, при любом значении Т > 0 минимум f(Т,g) как функции переменной g также существует. Таким образом, поставленная задача оптимизации будет иметь решение (естественно, при его нахождении требуется учитывать ограничение оптимальные параметры для стратегии - student2.ru , а также отдельно анализировать указанный выше граничный случай).

АНАЛИЗ ДЛЯ СПЕЦИАЛЬНОГО СЛУЧАЯ:

Наши рекомендации